Núm. 127 (2020)
Artículo de investigación

Mycelial inhibition of Trichoderma spp. isolated from the cultivation of Pleurotus ostreatus with an extract of Pycnoporus sp.

Gerardo Diaz-Godinez
Universidad Autónoma de Tlaxcala

Publicado 2020-01-07

Palabras clave

  • Disease control,
  • edible mushrooms,
  • lignocellulosic substrate
  • Disease control,
  • edible mushrooms,
  • lignocellulosic substrate


Background and Aims: The production of edible fungi is affected by bacterial, fungal and viral diseases, which very often produces large losses. In the production of mushrooms of the genus Pleurotus, the fungi of the genus Trichoderma represent a serious problem of contamination and although there are some chemical compounds that control the infection, they are not entirely safe for human consumption, so they are looking for alternatives through biotechnology, such as the one presented in this paper. Methods: Strains of fungi of the genus Trichoderma were isolated from the substrate where Pleurotus ostreatus was being cultivated (characteristic contamination of green mold), they were identified morphologically and molecularly, later tests were carried out to inhibit the growth of Trichoderma strains in both agar and wheat straw using a cetonic extract of the fruiting body dehydrated of Pycnoporus sp. Key results: Two strains of Trichoderma (Trichoderma pleuroti and Trichoderma atrobrunneum, belonging to the clade of Trichoderma harzianum) were isolated from infected substrate obtained in production modules of Pleurotus ostreatus located in Tlaquitenango and Cuernavaca from the Morelos state, Mexico. On the other hand, the effect of a cetonic extract of the fruiting body of Pycnoporus sp. on the mycelial growth of the isolated strains of Trichoderma was evaluated, observing decrease in mycelial growth rate in Petri dish up to 72% and on lignocellulosic substrate both mycelial growth and sporulation were delayed up to 10 days. Conclusions: It is suggested that the extract of Pycnoporus sp. is an alternative to control the growth and sporulation of strains of Trichoderma in the cultivation of mushrooms of the genus Pleurotus.


  1. Beyer, D. M., P.J. Wuest and J.J. Kremser. 2000. Evaluation of epidemiological factors and mushroom substrate characteristics influencing the occurrence and development of Trichoderma green mold. In: Van Griensven L.J.L.D. (ed.). Science and Cultivation of Edible Fungi. CRC Press. Netherlands Pp. 633-640.
  2. Chaverri, P., F. Branco-Rocha, W. Jaklitsch, R. Gazis, T. Degenkolb and G. J. Samuels. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107(3): 558-590. DOI: 10.3852/14-147
  3. Chen, X., C. P. Romaine, M. D. Ospina-Giraldo and D. J. Royse. 1999. A polymerase chain reaction-based test for the identification of Trichoderma harzianum biotypes 2 and 4, responsible for the worldwide green mold epidemic in cultivated Agaricus bisporus. Applied Microbiology and Biotechnology 52: 246-250. DOI: 10.1007/s002530051516
  4. Choi, I. Y., S. B. Hong and M. C. Yadav. 2003. Molecular and morphological characterization of green mold, Trichoderma spp. isolated from oyster mushrooms. Mycobiology 31(2): 74-80. DOI: 10.4489/MYCO.2003.31.2.074
  5. Danesh, Y. R., E. M. Goltapeh and H. Rohani. 2000. Identification of Trichoderma species causing green mold in button mushroom farms, distribution and their relative abundance. In: Van Griensven L.J.L.D. (ed.). Science and Cultivation of Edible Fungi. CRC Press. Netherland. 653-659 Pp.
  6. Gea, F. J. 2009. First report of Trichoderma pleurotum on oyster mushroom crops in Spain. Journal of Plant Pathology 91: 504.
  7. Goltapeh, E. M. and Y. R. Danesh. 2000. Studies on interaction between Trichoderma species and Agaricus bisporus mycelium. In: Van Griensven L.J.L.D. (ed.). Science and Cultivation of Edible Fungi. CRC Press. Netherland. 661-666 Pp.
  8. Hatvani, L., P. Sabolić, S. Kocsubé, L. Kredics, D. Czifra, C. Vágvölgyl, J. Kaliterna, D. Ivić and I. Kosalec. 2012. The first report on mushroom green mould disease in Croatia. Arhiv za Higijenu Rada i Toksikologiju 63(4): 481-486. DOI: 10.2478/10004-1254-63-2012-2220
  9. Hatvani, L., Z. Antal, L. Manczinger, A. Szekeres, I. S. Druzhinina, C. P. Kubicek, A. Nagy, E. Nagy, C. Vágvölgyi and L. Kredics, 2007. Green mould diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97: 532-537. DOI: 10.1094/PHYTO-97-4-0532.
  10. Kim, J. W., S. Kwon and H. J. Kang. 1995. Studies on the pathogenic Pseudomonas causing bacterial disease of cultivated mushroom in Korea. Korean Journal Plant Pathology 11: 353-360.
  11. Kim, K. Y., G .J. Lee, M. G. Ha, T. H. Lee and J. D. Lee. 2000. Intrageneric relationships of Trichoderma based on internal transcribed spacers and 5.8S rDNA nucleotide sequences. Mycobiology 28: 11-16. DOI: 10.1080/12298093.2000.12015716
  12. Komon-Zelazowska, M., J. Bissett, D. Zafari, L. Hatvani, L. Manczinger, S. Woo, M. Lorito, L. Kredics, C. P. Kubicek and S. I. Druzhinina. 2007. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Applied and Environental Microbiology 73(22): 7415-7426. DOI: 10.1128/AEM.01059-07
  13. Kredics, L., L. Hatvani, L. Antal, L. Manczinger, S. I. Druzhinina, P. C. Kubicek, A. Szekeres, A. Nagy, C. Vágvölgyi and E. Nagy. 2006. Green mold disease of oyster mushroom in Hungary and Transylvania. Acta Microbiologica et Immunologica Hungarica 53: 306-307.
  14. Kredics, L., S. Kocsubé, L. Nagy, M. Komoń-Zelazowska, L. Manczinger, E. Sajben, A. Nagy, C. Vágvölgyi, C. P. Kubicek, I. S. Druzhinina and L. Hatvani. 2009. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. Microbiology Letters 300: 58-67. DOI: 10.1111/j.1574-6968.2009.01765.x
  15. Marik, T., P. Urbán, C. Tyagi, A. Szekeres, B. Leitgeb, M. Vágvölgyi, L. Manczinger, I. S. Druzhinina, C. Vágvölgyi and L. Kredics. 2017. Diversity profile and dynamics of peptaibols produced by green mould Trichoderma species in interactions with their hosts Agaricus bisporus and Pleurotus ostreatus. Chemistry & Biodiversity 14(6): e1700033. DOI: 10.1002/cbdv.201700033
  16. Oei, P. 1991. Manual on mushroom cultivation: techniques, species and opportunities for commercial application in developing countries. CTA, Wageningen. Netherlands. Pp 249.
  17. Park, M.S., K. S. Bae and S. H. Yu. 2006. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34: 11-113. DOI: 10.4489/MYCO.2006.34.3.111
  18. Park, M. S., K. S. Bae and S. H. Yu. 2004. Molecular and morphological analysis of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. Journal of Huazhong Agricultural University 23: 157-164. DOI: 10.4489/MYCO.2006.34.3.111
  19. Qiu, Z., X. Wu, J. Zhang and C. Huang. 2017. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PloS One, 12(10): e0187055. DOI: 10.1371/journal.pone.0187055
  20. Reyes, Q. C. K. 2013. Propiedades antifúngicas diferenciadas de extractos vegetales como estrategia potencial para la prevención, manejo y control del moho verde (Trichoderma spp.): En el cultivo de los hongos comestibles (Lentinula, Pleurotus). Doctoral Thesis. Colegio de Posgraduados (COLPOS), Texcoco México. ID: ai:www.biblio.colpos.mx:10521/2193
  21. Royse, D. J. 2014. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina. In Singh M (ed.). Proceedings of the 8 th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8). ICAR-Directorate of Mushroom Research. New Delhi, India. Pp. 639.
  22. Samuels, G. L. and H. Prakash. 2015. Trichoderma: identification and agricultural applications (No.LC-0862). The American Phytopathological Society, Minnesota U.S.A.
  23. Sharma, S. R. and B. Vijay. 1996. Yield loss in Pleurotus ostreatus spp. caused by Trichoderma viride. Mushroom Research 5: 19-22.
  24. Sobal, C. M., A. P. Morales, Q. M. Bonilla, S. W. Martínez and D. Martínez-Carrera. 2016. Biotecnología, innovación y desarrollo en la cadena de valor con base en los recursos genéticos de los hongos comestibles, medicinales y funcionales. In: Martínez-Carrera D., Ramírez J. J. (eds.). Ciencia, Tecnología e Innovación en el Sistema Agroalimentario de México, Colegio de Postgraduados-AMC-CONACYT-UPAEP-IMINAP Press, Texcoco, México. Pp. 761-779.
  25. Sobieralski, K., M. Siwulski, M. Kommon-Żelazowska, L. Błaszczyk, I. Sas-Golak and D. Frużyńska-Jóźwiak. 2012. Impact of Trichoderma pleurotum and T. pleuroticola isolates on yielding of Pleurotus ostreatus (FR.) Kumm. Journal of Plant Protection Research 52(1): 165-168. DOI: 10.2478/v10045-012-0025-4
  26. Soković, M. and L. J. van Griensven. 2006. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology 116: 211-224. DOI: 10.1007/s10658-006-9053-0
  27. Téllez-Téllez, M., G. Díaz-Godínez and C. Sánchez. 2003. Physiology of colony Pleurotus pulmonarius grown on media overlaid with a cellophane membrane. Applied Microbiology and Biotechnology 63: 212-216. DOI: 10.1007/s00253-003-1387-3
  28. Wang, G., X. Cao, X. Ma, M. Guo, C. Liu, L. Yan and Y. Bian. 2016. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Microbiology Open 5(4): 709-718. DOI: 10.1002/mbo3.364
  29. Woo, S. L., P. Di Benedetto, M. Senatore, K. Abadi, S. Gigante, I. Soriente, S. Ferraioli, F. Scala and M. Lorito. 2004. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy. Journal of Zhejiang University Agriculture and Life Sciences 30: 469-470.
  30. Zehr, E. I. 1978. Methods for evaluating plant fungicides, nematicides, and bactericides. Prepared jointly by the American Phytopathological Society and the Society of Nematologists. Publisher: American Phytopathological Society, St. Paul, Minn.