Effects of light availability and seed size on germination and initial growth of two congeneric species of Fabaceae

Marcilio Fagundes, Pablo Cuevas-Reyes, Walter S. Araujo, Mauricio L. Faria, Henrique M. Valerio, Marcio A. Pimenta, Luis A.D. Falcão, Ronaldo Reis-Junior, Joan Sebastian Aguilar-Peralta, Henrique Tadeu dos Santos

Resumen


Background and Aims: Environmental factors can interact with plant life history to determinate the reproductive strategies of adult plants and seedling recruitment. We expect that widely distributed tree species produce heavier seed and with greater variation in seed size than shrubs of restricted geographic distribution. We also predict that widely distributed tree species should be capable to germinate and develop under variable range of light conditions, while sun-adapted shrubs should germinate and develop better under high light intensity. We used as models two congeneric species of Fabaceae. Copaifera langsdorffii is a widely distributed arboreal species and C oblongifolia is a shrub with restricted distribution.
Methods: Seeds were collected from two plant species in a Cerrado vegetation area, northern Minas Gerais, Brazil. The effects of light available on seed germination and seedling development was conducted in a germination chamber with controlled photoperiod, temperature and light intensity.
Key results: The widely distributed tree (C. langsdorffii) had greater seed mass than the shrub (C. oblongifolia). Seeds of C. langsdorffii germinated faster under available high light, while the shrub C. oblongifolia seeds required less time to germinate under available low light and darkness. Under high light intensity, germination percentage of C. langsdorffii and C. oblongifolia seeds did not vary. However, seeds of the shrub showed a higher germination percentage under low light intensity and darkness. In general, seed mass showed a negative relationship with germination percentage, but this relationship varied in function of species and the availability of light. Copaifera langsdorffii seedlings had larger shoots and roots than C. oblongifolia. In contrast, the root:shoot ratio was higher in shrub than in tree species.
Conclusions: Our results have important implications for understanding the patterns of distribution of two Copaifera species and explain the ability of C. oblongifolia to colonize disturbed areas.


Palabras clave


Copaifera, habitat invasion, plant recruitment, plant species distribution, regeneration niche hypothesis.

Texto completo:

PDF (English) EPUB (English)

Referencias


Aud, F. F. and I. D. K. Ferraz. 2012. Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon. Anais da Academia Brasileira de Ciências 84(3): 759-766. DOI: https://doi.org/10.1590/S0001-37652012000300018

Bartoń, K. 2015. MuMIn: Multi-Model Inference. R package version 1.15.1. 311. http://CRAN.R-project.org/package=MuMIn (consulted June, 2019).

Batlla, D. and R. L. Benech-Arnold. 2014. Weed seed germination and the light environment: implications for weed management. Weed Biology and Management 14(2): 77-87. DOI: https://doi.org/10.1111/wbm.12039

Benvenuti, S., M. Macchia and S. Miele. 2001. Light, temperature, and burial depth effects on Rumex obtusifolius seed germination and emergence. Weed Research 41(2): 177-186. DOI: https://doi.org/10.1046/j.1365-3180.2001.00230.x

Boyd, N. and R. Van Acker. 2004. Seed germination of common weed species as affected by oxygen concentration, light, and osmotic potential. Weed Science 52(4): 589-596. DOI: https://doi.org/10.1614/WS-03-15R2

Brown, J., N. J. Enright and B. P. Miller. 2003. Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia. Austral Ecology 28(3): 271-80. DOI: https://doi.org/10.1046/j.1442-9993.2003.t01-4-01287.x

Buckley, Y. M., P. Downey, S. V. Fowler, R. Hill, J. Memmot, H. Norambuena, M. Pitcairn, R. Shaw, A. W. Sheppard, C. Winks, R. Wittenberg and M. Rees. 2003. Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84(6): 1434-1440. DOI: https://doi.org/10.1890/0012-9658(2003)084[1434:AIBAGS]2.0.CO;2

Canadell, J. and P. H. Zedler. 1995. Underground structures of woody plants in mediterranean ecosystems of Australia, California, and Chile. In: Arroyo M. T. K., P. H. Zedler and M. D. Fox (eds.). Ecology and Biogeography of mediterranean Ecosystems in Chile, California, and Australia. Springer-Verlag. New York, USA. Pp. 177-210. DOI: https://doi.org/10.1007/978-1-4612-2490-7_8

Costa, F. V., A. C. M. Queiroz, M. L. B. Maia, R. Reis-Junior and M. Fagundes. 2016. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra-annual fruiting affects plant traits and herbivory? Revista de Biología Tropical 64(2): 507-520. DOI: https://doi.org/10.15517/rbt.v64i2.18586

Coutinho, R. D., P. Cuevas‑Reyes, G. W. Fernandes and M. Fagundes. 2019. Community structure of gall‑inducing insects associated with a tropical shrub: regional, local and individual patterns. Tropical Ecology 60: 74-82. DOI: https://doi.org/10.1007/s42965-019-00010-7

Crawley, M. J. 2007. The R book. Imperial College London at Silwood Park. London, UK. Pp. 527-528.

Davidson, A. M., M. Jennions and A. B. Nicotra. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters 14(4): 419-431. DOI: https://doi.org/10.1111/j.1461-0248.2011.01596.x

Delgado, J. A., M. D. Jiménez and A. Gómez. 2009. Samara size versus dispersal and seedling establishment in Ailanthus altissima (Miller) Swingle. Journal of Environmental Biology 30(2): 183-186.

Fagundes, M. 2014. Galling Insect Community associated with Copaifera langsdorffii (Fabaceae): the role of Inter- and Intra-annual host plant phenology. In: Fernandes, G. W. and J. C. Santos (eds.). Neotropical Insect Galls. Springer. Dordrecht, The Netherlands. Pp. 163-174. DOI: https://doi.org/10.1007/978-94-017-8783-3_11

Fagundes, M., M. G. Camargos and F. V. Costa. 2011. A Qualidade do solo afeta a germinaçao das sementes e o desenvolvimento das plântulas de Dimorphandra mollis Benth. (Leguminosae: Mimosoidae). Acta Botanica Brasilica 25(4): 908-915. DOI: https://doi.org/10.1590/S0102-33062011000400018

Fagundes, M., E. M. Barbosa, J. B. B. S. Oliveira, B. G. S. Brito, K. T. Freitas, K. F. Freitas and R. Reis-Junior. 2019. Galling inducing Insects associated with a tropical shrub: the role of resource concentration and species interactions. Ecología Austral 29(1): 12-19. DOI: https://doi.org/10.25260/ea.19.29.1.0.751

Fenner, M. and K. Thompson. 2005. The ecology of seeds. Cambridge University Press. Cambridge, UK. DOI: https://doi.org/10.1017/CBO9780511614101

Fernandes, E. G., E. M. Valério, K. L. R. Duarte, L. M. N. Capuchinho and M. Fagundes. 2018. Fungi associated with Copaifera oblongifolia (Fabaceae) seeds: occurrence and possible effects on seed germination. Acta Botanica Brasilica 33(1): 179-183. DOI: https://doi.org/10.1590/0102-33062018abb0100

Ferreras, A. E., G. Funes and L. Galetto. 2015. The role of seed germination in the invasion process of honey locust (Gleditsia triacanthos L., Fabaceae): comparison with a native confamilial. Plant Species Biology 30(2): 126-136. DOI: https://doi.org/10.1111/1442-1984.12041

Gallagher, R. V., R. P. Randall and M. R. Leishman. 2014. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conservation Biology 29(2): 360-369. DOI: https://doi.org/10.1111/cobi.12399

Geritz, S. A. 1995. Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. The American Naturalist 146(5): 685-707. DOI: https://doi.org/10.1086/285820

Gonçalves, J. F. C., D. C. S. Barreto, U. M. Santos-Junior, A. V. Fernandes, P. T. B. Sampaio and M. S. Buckeridge. 2015. Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaedora Ducke) under different light intensity. Brazilian Journal of Plant Physiology 17(3): 325-334. DOI: https://doi.org/10.1590/S1677-04202005000300007

Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52(1): 107-145. DOI: https://doi.org/10.1111/j.1469-185X.1977.tb01347.x

Guerrero, P. C., D. Mardones, N. Viveros, F. T. Peña-Gómez and R. O. Bustamante. 2016. Evolutionary change in the germination niche between related species within Neoporteria clade (Cactaceae) is idiosyncratic to habitat type. Gayana Botánica 73(2): 177-182. DOI: https://doi.org/10.4067/S0717-66432016000200177

He, Y., M. Wang, S. Wen, Y. Zhang, T. Ma and G. Du. 2007. Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologica Sinica 27(8): 3091-3108. DOI: https://doi.org/10.1016/S1872-2032(07)60063-8

Herrera, L. P. and P. Laterra. 2008. Do seed and microsite limitation interact with seed size in determining invasion patterns in flooding Pampa grasslands? In: Van der Valk, A. G. (ed.). Herbaceous Plant Ecology. Springer. Dordrecht, The Netherlands. Pp. 93-105. DOI: https://doi.org/10.1007/978-90-481-2798-6_8

Hu, X. W., J. Pan, D. D. Min, Y. Fan, X. Y. Ding, S. G. Fan, C. C. Baskin and J. M. Baskin. 2017. Seed dormancy and soil seedbank of the invasive weed Chenopodium hybridum in north-western China. Weed Research 57(1): 54-64. DOI: https://doi.org/10.1111/wre.12237

Jelbert, K., I. Stott, R. A. McDonald and D. Hodgson. 2015. Invasiveness of plants is predicted by size and fecundity in the native range. Ecology and Evolution 5(10):1933-1943. DOI: https://doi.org/10.1002/ece3.1432

Knüsel, S., A. De Boni, M. Conedera, P. Schleppi, J.-J. Thormann, M. Frehner and J. Wunder. 2017. Shade tolerance of Ailanthus altissima revisited: novel insights from southern Switzerland. Biological Invasions 19(2): 455-461. DOI: https://doi.org/10.1007/s10530-016-1301-4

Leishman, M. R. 2001. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93(2): 294-302. DOI: https://doi.org/10.1034/j.1600-0706.2001.930212.x

Longas, M. M., G. R. Chantre and M. R. Sabbatini. 2016. Soil nitrogen fertilisation as a maternal effect on Buglossoides arvensis seed germinability. Weed Research 56(6): 462-469. DOI: https://doi.org/10.1111/wre.12229

Milberg, P., L. Andersson and A. Noronha. 1996. Seed germination after short-duration light exposure: implications for the photo-control of weeds. Journal of Applied Ecology 33(6): 1469-1478. DOI: https://doi.org/10.2307/2404785

Milberg, P., L. Andersson and K. Thompson. 2000. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research 10(1): 99-104. DOI: https://doi.org/10.1017/S0960258500000118

Moles, A. T. and M. Westoby. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113(1): 91-105. DOI: https://doi.org/10.1111/j.0030-1299.2006.14194.x

Murray, B. R., B. P. Kelaher, G. C. Hose and W. F. Figueira. 2005. A meta-analysis of the interspecific relationship between seed size and plant abundance within local communities. Oikos 110(1): 191-195. DOI: https://doi.org/10.1111/j.0030-1299.2005.13943.x

Ohadi, S., H. R. Mashhadi, R. Tavakkol-Afshari and M. B. Mesgaran. 2010. Modelling the effect of light intensity and duration of exposure on seed germination of Phalaris minor and Poa annua. Weed Research 50(3): 209-217. DOI: https://doi.org/10.1111/j.1365-3180.2010.00769.x

Onyekwelu, J. C., B. Stimm, R. Mosandl and J. A. Olusola. 2012. Effects of light intensities on seed germination and early growth of Chrysophyllum albidum and lrvingia gabonensis seedlings. Nigerian Journal of Forestry 42(2): 58-67.

Poorter, L. 2007. Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist 169(4): 433-442. DOI: https://doi.org/10.1086/512045

Quero, J. L., L. Gómez-Aparicio, R. Zamora and F. T. Maestre. 2009. Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic and Applied Ecology 9(6): 635-644. DOI https://doi.org/10.1016/j.baae.2007.06.012

R Core Team. 2020. R: A language and environment for statistical computing, version 3.6.3. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/

Ranieri, B. D., F. F. Pezzini, K. S. Garcia, A. Chautems and M. G. C. França. 2012. Testing the regeneration niche hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: Implications for the conservation of rare species. Austral Ecology 37(1): 125-133. DOI: https://doi.org/10.1111/j.1442-9993.2011.02254.x

Ribeiro, L. C. and F. Borghetti. 2014. Comparative effects of desiccation, heat shock and high temperatures on seed germination of savanna and forest tree species. Austral Ecology 39(3): 267-278. DOI: https://doi.org/10.1111/aec.12076

Simão, E. and M. Takaki. 2008. Effect of light and temperature on seed germination in Tibouchina mutabilis (Vell.) Cogn. (Melastomataceae). Biota Neotroprica 8(2): 63-68. DOI: https://doi.org/10.1590/S1676-06032008000200006

Sõber, V. and S. Ramula. 2013. Seed number and environmental conditions do not explain seed size variability for the invasive herb Lupinus polyphyllus. Plant Ecology 214(6): 883-892. DOI: https://doi.org/10.1007/s11258-013-0216-8

Souza, M. L. and M. Fagundes. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5(17): 2566-2573. DOI: https://doi.org/10.4236/ajps.2014.517270

Souza, M. L. and M. Fagundes. 2017. Seed predation of Copaifera langsdorffii (Fabaceae): a tropical tree with supra-annual fruiting. Plant Species Biology 32(1): 66-73. DOI: https://doi.org/10.1111/1442-1984.12128

Souza, M. L., R. R. Solar and M. Fagundes. 2015a. Reproductive strategy of Copaifera langsdorffii (Fabaceae): more seeds or better seeds? Revista de Biología Tropical 63(4): 1161-1167.

Souza, M. L., D. P. Silva, L. B. Fantecelle and J. P. Lemos Filho. 2015b. Key factors affecting seed germination of Copaifera langsdorffii, a Neotropical tree. Acta Botanica Brasilica 29(4): 473-477. DOI: https://doi.org/10.1590/0102-33062015abb0084

Souza, A. D. G., O. J. Smiderle, V. M. Spinelli, R. O. D. Souza and V. J. Bianchi. 2016. Correlation of biometrical characteristics of fruit and seed with twinning and vigor of Prunus persica rootstocks. Journal of Seed Science 38(4): 322-328. DOI: https://doi.org/10.1590/2317-1545v38n4164650

Wang, H., B. Zhang, L. Dong and Y. Lou. 2016. Seed germination ecology of Catch weed Bedstraw (Galium aparine). Weed Science 64(4): 634-641. DOI: https://doi.org/10.1614/WS-D-15-00129.1

Warton, D. and F. Hui. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1): 3-10. DOI: https://doi.org/10.1890/10-0340.1

Yang, Z. and D. J. Midmore. 2005. Modeling plant resource allocation and growth partitioning in responses to environmental heterogeneity. Ecological Modelling 181(1): 59-77. DOI: https://doi.org/10.1016/j.ecolmodel.2004.06.023




DOI: https://doi.org/10.21829/abm127.2020.1638

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2020 Acta Botanica Mexicana

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

 

Cintillo Legal

Acta Botanica Mexicana, Núm. 127, 2020. Publicación continua editada por el Instituto de Ecología, A.C., a través del Centro Regional del Bajío. www.inecol.mx

Editor responsable: Marie-Stéphanie Samain. Reservas de Derechos al Uso Exclusivo No. 04-2016-062312171000-203, ISSN electrónico 2448-7589, ambos otorgados por el Instituto Nacional del Derecho de Autor.

Responsable de la última actualización: Marie-Stéphanie Samain. Ave. Lázaro Cárdenas 253, C.P. 61600 Pátzcuaro, Michoacán, México. Tel. +52 (434) 117 95 13, fecha de última actualización, 7 de enero de 2020.

ISSN electrónico: 2448-7589

Acta Botanica Mexicana se distribuye bajo una  Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.

Basada en una obra en abm.ojs.inecol.mx