Núm. 127 (2020)
Artículo de investigación

Influencia de la disponibilidad de luz y la masa de semillas sobre la germinabilidad y el crecimiento inicial de dos especies congénitas de Fabaceae

Marcilio Fagundes
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Pablo Cuevas-Reyes
Universidad Michoacana de San Nicolás de Hidalgo
Biografía
Walter S. Araujo
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Mauricio L. Faria
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Henrique M. Valerio
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Marcio A. Pimenta
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Luis A.D. Falcão
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Ronaldo Reis-Junior
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros
Joan Sebastian Aguilar-Peralta
Laboratorio de Ecología de Interacciones Bióticas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo
Henrique Tadeu dos Santos
Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Departamento de Biologia Geral, Universidade Estadual de Montes Claros

Publicado 2020-06-22

Palabras clave

  • Copaifera,
  • habitat invasion,
  • plant recruitment,
  • plant species distribution,
  • regeneration niche hypothesis.
  • Copaifera,
  • distribución de especies de plantas,
  • hipótesis del nicho de regeneración,
  • invasión de hábitat,
  • reclutamiento de plantas

Resumen

Antecedentes y Objetivos: Los factores ambientales pueden interactuar con la historia de vida de las plantas determinando las estrategias reproductivas de individuos adultos y el reclutamiento de plántulas. Predecimos que las especies de árboles ampliamente distribuidas producen semillas más pesadas y con una mayor variación en el tamaño de las semillas que los arbustos de distribución geográfica restringida. Esperamos que las especies arbóreas ampliamente distribuidas deberían ser capaces de germinar y desarrollarse bajo un rango variable de condiciones de luz, mientras que los arbustos adaptados a condiciones de sol deberían germinar y desarrollarse mejor con una alta intensidad de luz. Usamos como modelo dos especies congenéricas de Fabaceae. Copaifera langsdorffii es una especie arbórea ampliamente distribuida y C. oblongifolia es un arbusto de distribución geográfica restringida.
Métodos: Se colectaron semillas de estas especies de plantas en un área de vegetación de Cerrado, al norte del estado de Minas Gerais, Brasil. Los efectos de la disponibilidad de luz sobre la germinación de semillas y el desarrollo de plántulas se realizaron en una cámara de germinación con fotoperíodo controlado, temperatura e intensidad de luz.
Resultados clave: El árbol de amplia distribución (C. langsdorffii) tuvo mayor masa de semillas que el arbusto (C. oblongifolia). Las semillas de C. langsdorffii germinaron más rápido bajo alta disponibilidad de luz, mientras que las semillas de C. oblongifolia requirieron menos tiempo para germinar bajo poca luz disponible y oscuridad. En alta intensidad de luz, las semillas de C. langsdorffii y de C. oblongifolia tuvieron similares porcentajes, mientras que las semillas de C. oblongifolia mostraron una mayor germinación en baja intensidad de luz y oscuridad. La masa de semillas mostró una relación negativa con el porcentaje de germinación, pero esta relación varió en función de las especies y de la disponibilidad de luz. Las plántulas de C. langsdorffii tuvieron mayor desarrollo de brotes y raíces que C. oblongifolia. En contraste, la relación raíz:brote fue mayor en arbustos que en árboles.
Conclusiones: Nuestros resultados tienen implicaciones importantes para comprender los patrones de distribución de dos especies de Copaifera y poder explicar la capacidad de C. oblongifolia para colonizar áreas perturbadas.

Citas

  1. Aud, F. F. and I. D. K. Ferraz. 2012. Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon. Anais da Academia Brasileira de Ciências 84(3): 759-766. DOI: https://doi.org/10.1590/S0001-37652012000300018
  2. Bartoń, K. 2015. MuMIn: Multi-Model Inference. R package version 1.15.1. 311. http://CRAN.R-project.org/package=MuMIn (consulted June, 2019).
  3. Batlla, D. and R. L. Benech-Arnold. 2014. Weed seed germination and the light environment: implications for weed management. Weed Biology and Management 14(2): 77-87. DOI: https://doi.org/10.1111/wbm.12039
  4. Benvenuti, S., M. Macchia and S. Miele. 2001. Light, temperature, and burial depth effects on Rumex obtusifolius seed germination and emergence. Weed Research 41(2): 177-186. DOI: https://doi.org/10.1046/j.1365-3180.2001.00230.x
  5. Boyd, N. and R. Van Acker. 2004. Seed germination of common weed species as affected by oxygen concentration, light, and osmotic potential. Weed Science 52(4): 589-596. DOI: https://doi.org/10.1614/WS-03-15R2
  6. Brown, J., N. J. Enright and B. P. Miller. 2003. Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia. Austral Ecology 28(3): 271-80. DOI: https://doi.org/10.1046/j.1442-9993.2003.t01-4-01287.x
  7. Buckley, Y. M., P. Downey, S. V. Fowler, R. Hill, J. Memmot, H. Norambuena, M. Pitcairn, R. Shaw, A. W. Sheppard, C. Winks, R. Wittenberg and M. Rees. 2003. Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84(6): 1434-1440. DOI: https://doi.org/10.1890/0012-9658(2003)084[1434:AIBAGS]2.0.CO;2
  8. Canadell, J. and P. H. Zedler. 1995. Underground structures of woody plants in mediterranean ecosystems of Australia, California, and Chile. In: Arroyo M. T. K., P. H. Zedler and M. D. Fox (eds.). Ecology and Biogeography of mediterranean Ecosystems in Chile, California, and Australia. Springer-Verlag. New York, USA. Pp. 177-210. DOI: https://doi.org/10.1007/978-1-4612-2490-7_8
  9. Costa, F. V., A. C. M. Queiroz, M. L. B. Maia, R. Reis-Junior and M. Fagundes. 2016. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra-annual fruiting affects plant traits and herbivory? Revista de Biología Tropical 64(2): 507-520. DOI: https://doi.org/10.15517/rbt.v64i2.18586
  10. Coutinho, R. D., P. Cuevas‑Reyes, G. W. Fernandes and M. Fagundes. 2019. Community structure of gall‑inducing insects associated with a tropical shrub: regional, local and individual patterns. Tropical Ecology 60: 74-82. DOI: https://doi.org/10.1007/s42965-019-00010-7
  11. Crawley, M. J. 2007. The R book. Imperial College London at Silwood Park. London, UK. Pp. 527-528.
  12. Davidson, A. M., M. Jennions and A. B. Nicotra. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters 14(4): 419-431. DOI: https://doi.org/10.1111/j.1461-0248.2011.01596.x
  13. Delgado, J. A., M. D. Jiménez and A. Gómez. 2009. Samara size versus dispersal and seedling establishment in Ailanthus altissima (Miller) Swingle. Journal of Environmental Biology 30(2): 183-186.
  14. Fagundes, M. 2014. Galling Insect Community associated with Copaifera langsdorffii (Fabaceae): the role of Inter- and Intra-annual host plant phenology. In: Fernandes, G. W. and J. C. Santos (eds.). Neotropical Insect Galls. Springer. Dordrecht, The Netherlands. Pp. 163-174. DOI: https://doi.org/10.1007/978-94-017-8783-3_11
  15. Fagundes, M., M. G. Camargos and F. V. Costa. 2011. A Qualidade do solo afeta a germinaçao das sementes e o desenvolvimento das plântulas de Dimorphandra mollis Benth. (Leguminosae: Mimosoidae). Acta Botanica Brasilica 25(4): 908-915. DOI: https://doi.org/10.1590/S0102-33062011000400018
  16. Fagundes, M., E. M. Barbosa, J. B. B. S. Oliveira, B. G. S. Brito, K. T. Freitas, K. F. Freitas and R. Reis-Junior. 2019. Galling inducing Insects associated with a tropical shrub: the role of resource concentration and species interactions. Ecología Austral 29(1): 12-19. DOI: https://doi.org/10.25260/ea.19.29.1.0.751
  17. Fenner, M. and K. Thompson. 2005. The ecology of seeds. Cambridge University Press. Cambridge, UK. DOI: https://doi.org/10.1017/CBO9780511614101
  18. Fernandes, E. G., E. M. Valério, K. L. R. Duarte, L. M. N. Capuchinho and M. Fagundes. 2018. Fungi associated with Copaifera oblongifolia (Fabaceae) seeds: occurrence and possible effects on seed germination. Acta Botanica Brasilica 33(1): 179-183. DOI: https://doi.org/10.1590/0102-33062018abb0100
  19. Ferreras, A. E., G. Funes and L. Galetto. 2015. The role of seed germination in the invasion process of honey locust (Gleditsia triacanthos L., Fabaceae): comparison with a native confamilial. Plant Species Biology 30(2): 126-136. DOI: https://doi.org/10.1111/1442-1984.12041
  20. Gallagher, R. V., R. P. Randall and M. R. Leishman. 2014. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conservation Biology 29(2): 360-369. DOI: https://doi.org/10.1111/cobi.12399
  21. Geritz, S. A. 1995. Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. The American Naturalist 146(5): 685-707. DOI: https://doi.org/10.1086/285820
  22. Gonçalves, J. F. C., D. C. S. Barreto, U. M. Santos-Junior, A. V. Fernandes, P. T. B. Sampaio and M. S. Buckeridge. 2015. Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaedora Ducke) under different light intensity. Brazilian Journal of Plant Physiology 17(3): 325-334. DOI: https://doi.org/10.1590/S1677-04202005000300007
  23. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52(1): 107-145. DOI: https://doi.org/10.1111/j.1469-185X.1977.tb01347.x
  24. Guerrero, P. C., D. Mardones, N. Viveros, F. T. Peña-Gómez and R. O. Bustamante. 2016. Evolutionary change in the germination niche between related species within Neoporteria clade (Cactaceae) is idiosyncratic to habitat type. Gayana Botánica 73(2): 177-182. DOI: https://doi.org/10.4067/S0717-66432016000200177
  25. He, Y., M. Wang, S. Wen, Y. Zhang, T. Ma and G. Du. 2007. Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologica Sinica 27(8): 3091-3108. DOI: https://doi.org/10.1016/S1872-2032(07)60063-8
  26. Herrera, L. P. and P. Laterra. 2008. Do seed and microsite limitation interact with seed size in determining invasion patterns in flooding Pampa grasslands? In: Van der Valk, A. G. (ed.). Herbaceous Plant Ecology. Springer. Dordrecht, The Netherlands. Pp. 93-105. DOI: https://doi.org/10.1007/978-90-481-2798-6_8
  27. Hu, X. W., J. Pan, D. D. Min, Y. Fan, X. Y. Ding, S. G. Fan, C. C. Baskin and J. M. Baskin. 2017. Seed dormancy and soil seedbank of the invasive weed Chenopodium hybridum in north-western China. Weed Research 57(1): 54-64. DOI: https://doi.org/10.1111/wre.12237
  28. Jelbert, K., I. Stott, R. A. McDonald and D. Hodgson. 2015. Invasiveness of plants is predicted by size and fecundity in the native range. Ecology and Evolution 5(10):1933-1943. DOI: https://doi.org/10.1002/ece3.1432
  29. Knüsel, S., A. De Boni, M. Conedera, P. Schleppi, J.-J. Thormann, M. Frehner and J. Wunder. 2017. Shade tolerance of Ailanthus altissima revisited: novel insights from southern Switzerland. Biological Invasions 19(2): 455-461. DOI: https://doi.org/10.1007/s10530-016-1301-4
  30. Leishman, M. R. 2001. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93(2): 294-302. DOI: https://doi.org/10.1034/j.1600-0706.2001.930212.x
  31. Longas, M. M., G. R. Chantre and M. R. Sabbatini. 2016. Soil nitrogen fertilisation as a maternal effect on Buglossoides arvensis seed germinability. Weed Research 56(6): 462-469. DOI: https://doi.org/10.1111/wre.12229
  32. Milberg, P., L. Andersson and A. Noronha. 1996. Seed germination after short-duration light exposure: implications for the photo-control of weeds. Journal of Applied Ecology 33(6): 1469-1478. DOI: https://doi.org/10.2307/2404785
  33. Milberg, P., L. Andersson and K. Thompson. 2000. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research 10(1): 99-104. DOI: https://doi.org/10.1017/S0960258500000118
  34. Moles, A. T. and M. Westoby. 2006. Seed size and plant strategy across the whole life cycle. Oikos 113(1): 91-105. DOI: https://doi.org/10.1111/j.0030-1299.2006.14194.x
  35. Murray, B. R., B. P. Kelaher, G. C. Hose and W. F. Figueira. 2005. A meta-analysis of the interspecific relationship between seed size and plant abundance within local communities. Oikos 110(1): 191-195. DOI: https://doi.org/10.1111/j.0030-1299.2005.13943.x
  36. Ohadi, S., H. R. Mashhadi, R. Tavakkol-Afshari and M. B. Mesgaran. 2010. Modelling the effect of light intensity and duration of exposure on seed germination of Phalaris minor and Poa annua. Weed Research 50(3): 209-217. DOI: https://doi.org/10.1111/j.1365-3180.2010.00769.x
  37. Onyekwelu, J. C., B. Stimm, R. Mosandl and J. A. Olusola. 2012. Effects of light intensities on seed germination and early growth of Chrysophyllum albidum and lrvingia gabonensis seedlings. Nigerian Journal of Forestry 42(2): 58-67.
  38. Poorter, L. 2007. Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist 169(4): 433-442. DOI: https://doi.org/10.1086/512045
  39. Quero, J. L., L. Gómez-Aparicio, R. Zamora and F. T. Maestre. 2009. Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic and Applied Ecology 9(6): 635-644. DOI https://doi.org/10.1016/j.baae.2007.06.012
  40. R Core Team. 2020. R: A language and environment for statistical computing, version 3.6.3. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/
  41. Ranieri, B. D., F. F. Pezzini, K. S. Garcia, A. Chautems and M. G. C. França. 2012. Testing the regeneration niche hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: Implications for the conservation of rare species. Austral Ecology 37(1): 125-133. DOI: https://doi.org/10.1111/j.1442-9993.2011.02254.x
  42. Ribeiro, L. C. and F. Borghetti. 2014. Comparative effects of desiccation, heat shock and high temperatures on seed germination of savanna and forest tree species. Austral Ecology 39(3): 267-278. DOI: https://doi.org/10.1111/aec.12076
  43. Simão, E. and M. Takaki. 2008. Effect of light and temperature on seed germination in Tibouchina mutabilis (Vell.) Cogn. (Melastomataceae). Biota Neotroprica 8(2): 63-68. DOI: https://doi.org/10.1590/S1676-06032008000200006
  44. Sõber, V. and S. Ramula. 2013. Seed number and environmental conditions do not explain seed size variability for the invasive herb Lupinus polyphyllus. Plant Ecology 214(6): 883-892. DOI: https://doi.org/10.1007/s11258-013-0216-8
  45. Souza, M. L. and M. Fagundes. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5(17): 2566-2573. DOI: https://doi.org/10.4236/ajps.2014.517270
  46. Souza, M. L. and M. Fagundes. 2017. Seed predation of Copaifera langsdorffii (Fabaceae): a tropical tree with supra-annual fruiting. Plant Species Biology 32(1): 66-73. DOI: https://doi.org/10.1111/1442-1984.12128
  47. Souza, M. L., R. R. Solar and M. Fagundes. 2015a. Reproductive strategy of Copaifera langsdorffii (Fabaceae): more seeds or better seeds? Revista de Biología Tropical 63(4): 1161-1167.
  48. Souza, M. L., D. P. Silva, L. B. Fantecelle and J. P. Lemos Filho. 2015b. Key factors affecting seed germination of Copaifera langsdorffii, a Neotropical tree. Acta Botanica Brasilica 29(4): 473-477. DOI: https://doi.org/10.1590/0102-33062015abb0084
  49. Souza, A. D. G., O. J. Smiderle, V. M. Spinelli, R. O. D. Souza and V. J. Bianchi. 2016. Correlation of biometrical characteristics of fruit and seed with twinning and vigor of Prunus persica rootstocks. Journal of Seed Science 38(4): 322-328. DOI: https://doi.org/10.1590/2317-1545v38n4164650
  50. Wang, H., B. Zhang, L. Dong and Y. Lou. 2016. Seed germination ecology of Catch weed Bedstraw (Galium aparine). Weed Science 64(4): 634-641. DOI: https://doi.org/10.1614/WS-D-15-00129.1
  51. Warton, D. and F. Hui. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1): 3-10. DOI: https://doi.org/10.1890/10-0340.1
  52. Yang, Z. and D. J. Midmore. 2005. Modeling plant resource allocation and growth partitioning in responses to environmental heterogeneity. Ecological Modelling 181(1): 59-77. DOI: https://doi.org/10.1016/j.ecolmodel.2004.06.023