Núm. 128 (2021)
Artículo de investigación

Granos de almidón del endospermo de Andropogon, Arthraxon hispidus, e Hyparrhenia rufa (Andropogoneae, Panicoideae, Poaceae)

Jorge Gabriel Sánchez Ken
Instituto de Ecología, A.C. Centro Regional del Bajío
Biografía

Publicado 2021-10-31

Palabras clave

  • Andropogon fastigiatus,
  • Andropogon virginicus complex,
  • granules,
  • hilum,
  • Miscanthus-type,
  • Triticum-type.
  • ...Más
    Menos
  • Andropogon fastigiatus,
  • complejo Andropogon virginicus,
  • gránulos,
  • hilum,
  • Miscanthus-type,
  • Triticum-type.
  • ...Más
    Menos

Resumen

Antecedentes y Objetivos: Las gramíneas tienen cinco tipos diferentes de morfología de granos de almidón del endospermo; sin embargo, debido a la alta diversidad dentro de la familia, la morfología de los granos de almidón generalmente está representada por una o dos especies. Para géneros como Andropogon (Andropogoneae), se ha reportado que tiene al menos tres tipos de granos de endospermo; sin embargo, la mayoría de las especies que fueron revisadas han sido transferidas a otros géneros. Por lo tanto, la pregunta de si el género tiene uno o más tipos de morfología de los granos de almidón del endospermo, aún permanece sin contestar.

Métodos: Se removieron entre cuatro y ocho cariópsides maduras de especímenes depositados en el herbario IEB y de algunas especies que fueron monitoreadas en el campo hasta que tuvieran cariópsides maduras. Las cariópsides fueron fijadas en una placa con una gota de adhesivo blanco Resistol® o resina. Se hicieron los cortes con una navaja de rasurar muy delgada. Los cortes se tiñeron con una gota diluida de solución Lugol, se observaron al microscopio y se tomaron fotografías a diferentes amplificaciones.

Resultados clave: Todas las especies de Andropogon tienen solo un tipo de morfología de granos de almidón, el tipo-Andropogon. En todas las especies los granos de almidón simples son más abundantes que los compuestos, excepto A. tenuispatheus donde sucede lo contrario. Las otras dos especies revisadas, Arthraxon hispidus e Hyparrhenia rufa tienen tipo-Andropogon y tipo-Panicum, respectivamente.

Conclusiones: Hasta este momento, se confirma que todas las especies revisadas tienen un solo tipo de morfología (tipo-Andropogon) de granos de almidón del endospermo. Existe variación en el tamaño, distribución de tamaños y formas de granos de almidón entre las especies. Andropogon gayanus es la única especie que tiene granos de almidón grandes hasta 28 µm, mientras que en las otras especies estos pueden medir hasta 15 µm de diámetro.

Citas

  1. Ai, Y., L. Gong, M. Reed, J. Huag, Y. Zhang and J. L. Jane. 2016. Characterization of starch from bamboo seeds. Starch 68(1-2): 131-139. DOI: https://doi.org/10.1002/star.201500206
  2. Bultosa, G., A. N. Hall and J. R. N. Taylor. 2002. Physico-chemical characterization of grain Tef (Eragrostis tef (Zucc.) Trotter) starch. Starch 54(10): 461-468. DOI: https://doi.org/10.1002/1521-379X(200210)54:10<461::AID-STAR461>3.0.CO;2-U
  3. Campbell, C. S. 1983. Systematics of the Andropogon virginicus complex (Gramineae). Journal of the Arnold Arboretum 64(2): 171-254. DOI: https://doi.org/10.5962/bhl.part.27406
  4. Campbell, C. S. 2003. Andropogon L. In: Barkworth, M. E., K. M. Capels, S. Long and M. B. Piep (eds.). Flora of North America, North of Mexico. Magnoliophyta: Commelinidae (in part): Poaceae, part 2. Oxford University Press. New York, USA. Pp. 649-664.
  5. GPWG. 2001. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden 88(3): 373-457. DOI: https://doi.org/10.2307/3298585
  6. Judziewicz, E. J. and T. R. Soderstrom. 1989. Morphological, anatomical, and taxonomic studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contributions to Botany 68: 1-52. DOI: https://doi.org/10.5962/bhl.title.131652
  7. Kimball, S., P. Mattis and the GIMP Development Team. 1995-2021. GNU Image Manipulation Program© GIMP 2.10.22. Creative Commons Attribution-ShareAlike 4.0 International License.
  8. Matsushima, R. 2015. Morphological variations of starch grains. In: Nakamura, Y. (ed.). Starch, metabolism and structure. Springer. Tokyo, Japan. 425-442 pp. DOI: https://doi.org/10.1007/978-4-431-55495-0_13
  9. Matsushima, R., J. Yamashita, S. Kariyama, T. Enomoto and W. Sakamoto. 2013. A phylogenetic re-evaluation of morphological variations of starch grains among Poaceae species. Journal of Applied Glycoscience 60: 37-44. DOI: https://doi.org/10.5458/jag.jag.JAG-2012_006
  10. McAllister, C. A., M. R. McKain, M. Li, B. Bookout and E. A. Kellogg. 2018. Specimen-based analysis of morphology and the environment in ecologically dominant grasses: the power of the herbarium. Philosophical Transactions B 374: 20170403. DOI: https://doi.org/10.1098/rstb.2017.0403
  11. McNair, J. B. 1930. The differential analysis of starches. Field Museum of Natural History, Botany 9(1): 1-44. DOI: https://doi.org/10.5962/bhl.title.2312
  12. Musaubach, M. G., A. Plos and M. P. Babot. 2013. Differentiation of archaeological maize (Zea mays L.) from native wild grasses based on starch grain morphology. Cases from the Central Pampas of Argentine. Journal of Archaeological Science 40(2): 1186-1193. DOI: https://doi.org/10.1016/j.jas.2012.09.026
  13. Nagahama, N. and G. A. Norrmann. 2012. Review of the genus Andropogon (Poaceae: Andropogoneae) in America based on cytogenetic studies. Journal of Botany 2012(632547): 1-9. DOI: https://doi.org/10.1155//2012/632547
  14. Reichert, E. T. 1913. The differentiation and specificity of starches in relation to genera, species, etc.; stereochemistry applied to protoplasmic processes and products, and as a strictly scientific basis for the classification of plants and animals, No. 173, part I. The Carnegie Institution of Washington. Washington, D.C., USA. Pp. 342. DOI: https://doi.org/10.5962/bhl.title.24351
  15. Sarwar, M. H., M. F. Sarwar, M. Sarwar, N. A. Qadri and S. Moghal. 2013. The importance of cereals (Poaceae: Gramineae) nutrition in human health: A review. Journal of Cereals and Oilseeds 4(3): 32-35. DOI: https://doi.org/10.5897/JCO12.023
  16. Soreng, R. J., P. M. Peterson, K. Romaschenko, G. Davidse, F. O. Zuloaga, E. Judziewicz, T. S. Filgueiras, J. I. Davis and O. Morrone. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae) Journal of Systematics and Evolution 53(2): 117-137. DOI: https://doi.org/10.1111/jse.12150
  17. Tateoka, T. 1954. On the systematic significance of starch grains of seeds in Poaceae. Journal of Japanese Botany 29(11): 341-347.
  18. Tateoka, T. 1962. Starch grains of endosperm in Grass Systematics. Botanical Magazine. Tokyo 75(892): 377-383. DOI: https://doi.org/10.15281/jplantres1887.75.377
  19. Tetlow, I. J. and M. J. Emes. 2017. Starch biosynthesis in the developing endosperms of grasses and cereals. Agronomy 7(4): 1-43. DOI: https://doi.org/10.3390/agronomy7040081
  20. Thiers, B. 2020. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden´s Virtual Herbarium. Available at http://sweetgum.nybg.org/ih/ (consulted January 2021).
  21. Watson, L., T. D. Macfarlane and M. J. Dallwitz. 1992 (onwards). The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/refs.htm (consulted January 2021).
  22. Welker, C. A. D., M. R. McKain, M. C. Estep, R. S. Pasquet, G. Chipabika, B. Pallangyo and E. A. Kellogg. 2020. Phylogenomics enables biogeographic analysis and a new subtribal classification of Andropogoneae (Poaceae-Panicoideae). Journal of Systematics and Evolution 58(6): 1003-1030. DOI: https://doi.org/10.1111/jse.12691
  23. Wipff, J. K. and R. B. Shaw. 2018. The taxonomic change in the Andropogon virginicus complex (Poaceae). Phytoneuron 2018-73: 1-2.
  24. Yun, M. S. and Y. Kawagoe. 2010. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant and Cell Physiology 51(9): 1469-1479. DOI: https://doi.org/10.1093/pcp/pcq116