Evaluación de la composición nutricional y fitoquímica de macroalgas marinas asociadas al ecosistema de manglar del Pacífico colombiano
DOI:
https://doi.org/10.21829/abm132.2025.2412Palabras clave:
Compuestos bioactivos, extractos, GC-MS, macroalgas marinas, nutrientes esencialesResumen
Antecedentes y Objetivos: Las algas marinas son de gran interés por sus compuestos bioactivos con aplicaciones biotecnológicas en industrias farmacéuticas, cosméticas, alimentarias y agronómicas. El objetivo de este trabajo fue determinar la composición nutricional y fitoquímica de tres macroalgas asociadas a las raíces de Rhizophora mangle: Bostrychia calliptera, Catenella impudica y Rhizoclonium riparium.
Métodos: Las muestras se colectaron en el manglar de la Bahía de Buenaventura, en el Pacífico colombiano. La composición nutricional se evaluó mediante análisis de cenizas, proteínas, fibra cruda y minerales, según los protocolos de la AOAC. Los extractos se obtuvieron con acetona (99.5%). Se realizó un tamizaje preliminar de metabolitos secundarios y se utilizó la técnica GC-MS para identificar los compuestos.
Resultados clave: Entre las tres especies analizadas, se encontraron variaciones en el porcentaje de cenizas (16.9-31.5), fibra cruda (2.52-30.2), proteínas (14.6-25) y nitrógeno (2.3-4). Los minerales más representativos fueron el potasio (30,100-35,000 mg kg-1), azufre (29,400-70,600 mg kg-1), hierro (1880-9180 mg kg-1), sodio (7330-46,700 mg kg-1), magnesio (7960-16,600 mg kg-1), calcio (5510-6860 mg kg-1), fósforo (800-1270 mg kg-1) y manganeso (204-4730 mg kg-1). En los extractos de todas las especies se detectaron alcaloides, esteroles, terpenos, glucósidos cardiotónicos y saponinas. Mediante análisis GC-MS se identificaron 14 compuestos volátiles en los extractos de Bostrychia calliptera (ocho compuestos), Catenella impudica (2) y Rhizoclonium riparium (7). Los compuestos comunes en todas las especies fueron el eicosano, 2-metiloctacosano, 2-metileicosano y el 3-metileicosano.
Conclusiones: Las macroalgas estudiadas mostraron un alto contenido de nutrientes esenciales, como potasio, azufre, hierro y manganeso, sugiriendo su potencial como biofertilizantes o suplementos. Además, varios de los compuestos identificados han demostrado actividades biológicas relevantes para la farmacología y la cosmetología. Estos hallazgos destacan el potencial de las macroalgas y contribuyen al conocimiento para el aprovechamiento sostenible de los recursos del manglar en el Pacífico colombiano.
Descargas
Citas
Abdel Jaleel, G. A., S. S. Azab, W. M. El-Bakly y A. Hassan. 2021. Methyl palmitate attenuates adjuvant induced arthritis in rats by decrease of CD68 synovial macrophages. Biomedicine & Pharmacotherapy 137: 111347. DOI: https://doi.org/10.1016/j.biopha.2021.111347 DOI: https://doi.org/10.1016/j.biopha.2021.111347
Abdu, M., M. G. Saad y H. M. Shafik. 2019. Phytochemical screening and antimicrobial activities of some green algae from Egypt. Journal of Medicinal Plants Studies 7(3): 12-16.
Afonso, C., C. Cardoso, A. Ripol, J. Varela, H. Quental-Ferreira, P. Pousão-Ferreira, M. S. Ventura, I. M. Delgado, I. Coelho, I. Castanheira y N. M. Bandarra. 2018. Composition and bioaccessibility of elements in green seaweeds from fishpond aquaculture. Food Research International 105: 271-277. DOI: https://doi.org/10.1016/j.foodres.2017.11.015 DOI: https://doi.org/10.1016/j.foodres.2017.11.015
AOAC. 2006. Official Methods of Analysis of AOAC International. 18th ed. Association of Official Analytical Chemists. Arlington, USA.
Aron Santhosh Kumar, Y., M. Palanisamy y N. Savithra. 2024. Bio profiling of brackish water alga Gracilaria tenuistipitata C.F. Chang & B.-M.Xia - an indigenous species from Andhra Pradesh, East Coast, India. Marine Biology Research 20(3-4): 59-74. DOI: https://doi.org/10.1080/17451000.2023.2299975 DOI: https://doi.org/10.1080/17451000.2023.2299975
Balachandran, A., S. B. Choi, M-M. Beata, J. Małgorzata, G. R. A. Froemming, C. A. Lavilla Jr., M. P. Billacura, S. N. Siyumbwa y P. N. Okechukwu. 2023. Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules 28(3): 1043. DOI: https://doi.org/10.3390/molecules28031043 DOI: https://doi.org/10.3390/molecules28031043
Banerjee, K., R. Ghosh, S. Homechaudhuri y A. Mitra. 2009. Seasonal variation in the biochemical composition of red seaweed (Catenella Repens) from Gangetic Delta, Northeast Coast of India. Journal of Earth System Science 118(5): 497-505. DOI: https://doi.org/10.1007/s12040-009-0045-2 DOI: https://doi.org/10.1007/s12040-009-0045-2
Beema-Shafreen, R. M., S. Seema, S. A. Lakshmi, A. Srivathsan, K. Tamilmuhilan, A. Shrestha, B. Balasubramanian, R. Dhandapani, R. Paramasivam, S. Al Obaid, S. H. Salmen, M. F. Mohd Amin y S. Muthupandian. 2022. In Vitro and In Vivo Antibiofilm Potential of Eicosane Against Candida albicans. Applied Biochemistry and Biotechnology 194(10): 4800-4816. DOI: https://doi.org/10.1007/s12010-022-03984-8 DOI: https://doi.org/10.1007/s12010-022-03984-8
Bhat, M. P., R. S. Kumar, B. Chakraborty, S. K. Nagaraja, K. G. Babu y S. Nayaka. 2024. Eicosane: An antifungal compound derived from Streptomyces sp. KF15 exhibits inhibitory potential against major phytopathogenic fungi of crops. Environmental Research 251(Pt 1): 118666. DOI: https://doi.org/10.1016/j.envres.2024.118666 DOI: https://doi.org/10.1016/j.envres.2024.118666
Borburema, H. D. S., R. P. De Lima y G. E. C. De Miranda. 2020. Effects of ocean warming, eutrophication and salinity variations on the growth of habitat-forming macroalgae in estuarine environments. Acta Botanica Brasilica 34(4): 662-672. DOI: https://doi.org/10.1590/0102-33062020abb0303 DOI: https://doi.org/10.1590/0102-33062020abb0303
Borburema, H. D. S., A, Graiff, E. Marinho-Soriano y U. Karsten. 2022. Photosynthetic performance, growth, pigment content, and photoprotective compounds of the mangrove macroalgae Bostrychia calliptera and Bostrychia montagnei (Rhodophyta) under light stress. Frontiers in Marine Science 9: 989454. DOI: https://doi.org/10.3389/fmars.2022.989454 DOI: https://doi.org/10.3389/fmars.2022.989454
Borburema, H. D. S., U. Karsten, N. Plag, N. S. Yokoya y E. Marinho-Soriano. 2024. Low molecular weight carbohydrate patterns of mangrove macroalgae from different climatic niches under ocean acidification, warming and salinity variation. Marine Environmental Research 194: 106316. DOI: https://doi.org/10.1016/J.MARENVRES.2023.106316 DOI: https://doi.org/10.1016/j.marenvres.2023.106316
Breeta, R. D. I. E., V. M. B. Grace y D. D. Wilson. 2021. Methyl Palmitate-A suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti-cancer effects on hepatocellular carcinoma cells. Basic & Clinical Pharmacology & Toxicology 128(3): 366-378. DOI: https://doi.org/10.1111/BCPT.13525 DOI: https://doi.org/10.1111/bcpt.13525
Campos, B. M., E. Ramalho, I. Marmelo, J. P. Noronha, M. Malfeito-Ferreira, M., P. Mata y M. S. Diniz. 2022. Proximate Composition, Physicochemical and Microbiological Characterization of Edible Seaweeds Available in the Portuguese Market. Frontiers in Bioscience 14(4): 26. DOI: https://doi.org/10.31083/j.fbe1404026 DOI: https://doi.org/10.31083/j.fbe1404026
Chankaew, W., D. Amornlerdpison y N. Lailerd. 2021. Characteristics of red macroalgae, Caloglossa beccarii DeToni from freshwater for food as safe and other applications in Thailand. International Journal of Agricultural Technology 17(1): 1-12.
Chankaew, W., W. Luaelae y S. Phromhom. 2016. Diversity and Screening of Biological Activity of Red Macroalgae from Trang Watershed Area, Thailand. International Journal of Agricultural Technology 12(7): 2113-2122.
Chao, K.P., S. Y. Su y C. S. Chen. 1999. Chemical composition and potential for utilization of the marine alga Rhizoclonium sp. Journal of Applied Phycology 11(6): 525-533. DOI: https://doi.org/10.1023/A:1008142609914 DOI: https://doi.org/10.1023/A:1008142609914
Chao, K.-P., Y. C. Su y C. S. 2000. Feasibility of Utilizing Rhizoclonium in Pulping and Papermaking. Journal of Applied Phycology 12: 53-62. DOI: https://doi.org/10.1023/A:1008166815023 DOI: https://doi.org/10.1023/A:1008166815023
Čmiková, N., L. Galovičová, M. Miškeje, P. Borotová, M. Kluz y M. Kačániová. 2022. Determination of antioxidant, antimicrobial activity, heavy metals and elements content of seaweed extracts. Plants 11(11): 1493. DOI: https://doi.org/10.3390/plants11111493 DOI: https://doi.org/10.3390/plants11111493
de Felício, R., S. de Albuquerque., M. C. M. Young., N. S. Yokoya y H. M. Debonsi. 2010. Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). Journal of Pharmaceutical and Biomedical Analysis 52(5): 763-769. DOI: https://doi.org/10.1016/j.jpba.2010.02.018 DOI: https://doi.org/10.1016/j.jpba.2010.02.018
De Jong, D. L. C., K. R. Timmermans, J. M. de Winter y G. C. H. Derksen. 2021. Effects of nutrient availability and light intensity on the sterol content of Saccharina latissima (Laminariales, Phaeophyceae). Journal of Applied Phycology 33: 1101-1113. DOI: https://doi.org/10.1007/s10811-020-02359-y DOI: https://doi.org/10.1007/s10811-020-02359-y
Duarte, M. E. R., D. G. Noseda, M. D. Noseda, S. Tulio,C. A. Pujol y E. B. Damonte. 2001. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 8(1): 53-58. DOI: https://doi.org/10.1078/0944-7113-00007 DOI: https://doi.org/10.1078/0944-7113-00007
Erlania, A. B., P. L. Macreadie, M. A. Young, O. J. Holland, Z. Clark, D. Ierodiaconou, R. C. Carvalho, D. Kennedy y A. D. Miller. 2023. Patterns and drivers of macroalgal ‘blue carbon’ transport and deposition in near-shore coastal environments. Science of The Total Environment 890: 164430. DOI: https://doi.org/10.1016/J.SCITOTENV.2023.164430 DOI: https://doi.org/10.1016/j.scitotenv.2023.164430
FAO. 2018. The Global Status of Seaweed Production, Trade and Utilization. Roma, Italia.
García-Granados, R. U., F. Cruz-Sosa, F. J. Alarcón-Aguilar, A. Nieto-Trujillo y M. E. Gallegos-Martínez. 2019. Análisis fitoquímico cualitativo de los extractos acuosos de Thalassia testudinum Banks ex Köning et Sims de la localidad de Champotón, Campeche, México, durante el ciclo anual 2016-2017. Polibotánica 48(24): 151-168. DOI: https://doi.org/10.18387/POLIBOTANICA.48.12 DOI: https://doi.org/10.18387/polibotanica.48.12
Giordano, M., A. Norici y S. Ratti. 2008. Role of Sulfur for Algae: Acquisition, Metabolism, Ecology and Evolution. In: Hell, R., C. Dahl, D. Knaff y T. Leustek (eds.). Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, 1st ed. Vol. 27. Springer. Dordrecht, Paises Bajos. Pp. 397-415. DOI: https://doi.org/10.1007/978-1-4020-6863-8_20 DOI: https://doi.org/10.1007/978-1-4020-6863-8_20
Guschina, I. y J. L. Harwood. 2009. Algal lipids and effect of the environment on their biochemistry. In: Kainz, M., M. Brett y M. Arts (eds.). Lipids in Aquatic Ecosystems. Springer. New York, EUA. Pp 1-24. DOI: https://doi.org/10.1007/978-0-387-89366-2_1 DOI: https://doi.org/10.1007/978-0-387-89366-2_1
Gyi, K. K. y U. S. Htun. 2013. Systematics of the genus Bostrychia Montagne from Setse and Kyaikkhami I: B. radicans Montagne (Montagne) based on the morphology and development of sporelings in culture. Universities Research Journal 6(1): 1-22.
Hannan, Md. A., A. A. M. Sohag R. Dash, Md. N. Haque, Md. Mohibbullah, D. F. Oktaviani, Md. T. Hossain, H. J. Choi e I. S. Moon. 2020. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 69: 153201. DOI: https://doi.org/10.1016/j.phymed.2020.153201 DOI: https://doi.org/10.1016/j.phymed.2020.153201
Hsu, H.Y., K. F. Hua, Y. C. Su, L. C. Chu, S. C. Su, H. W. Chiu., C. H. Wong, S. T. Chen, C. W. Shieh, S. S. Yang, Y. M. Chen y L. K. Chao. 2006. Alkali-soluble polysaccharides of Rhizoclonium riparium alga induce IL-1 gene expression via protein kinase signaling pathways. Journal of Agricultural and Food Chemistry 54(10): 3558-3565. DOI: https://doi.org/10.1021/jf060442f DOI: https://doi.org/10.1021/jf060442f
Ilyas, Z., A. Ali Redha, Y. S. Wu, F. Z. Ozeer y R. E. Aluko. 2023. Nutritional and Health Benefits of the Brown Seaweed Himanthalia elongata. Plant Foods for Human Nutrition 78(2): 233. DOI: https://doi.org/10.1007/S11130-023-01056-8 DOI: https://doi.org/10.1007/s11130-023-01056-8
Kumari, P., A. J. Bijo, V. A. Mantri, C. R. K. Reddy y B. Jha. 2013. Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86: 44-56. DOI: https://doi.org/10.1016/J.PHYTOCHEM.2012.10.015 DOI: https://doi.org/10.1016/j.phytochem.2012.10.015
Lenis, L. A., R. Benítez., E. Peña Salamancay y D. M. Chito Trujillo. 2007. Extracción, separación y elucidación estructural de dos metabolitos secundarios del alga marina Bostrychia calliptera. Scientia Et Technica 13(33): 97-102.
Linstrom, P. J. y W. G. Mallard. 2001. The NIST Chemistry WebBook: A chemical data resource on the Internet. Journal of Chemical and Engineering Data 46(5): 1059-1063. DOI: https://doi.org/10.1021/je000236i DOI: https://doi.org/10.1021/je000236i
Lorenzo, J. M., R. Agregán, P. E. S. Munekata, D. Franco, J. Carballo, S. Şahin, R. Lacomba y F. J. Barba. 2017. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs 15(11): 360. DOI: https://doi.org/10.3390/md15110360 DOI: https://doi.org/10.3390/md15110360
MacArtain, P., C. I. R. Gill, M. Brooks, R. Campbell e I. R. Rowland. 2007. Nutritional value of edible seaweeds. Nutrition Reviews 65(12 Pt 1): 535-543. DOI: https://doi.org/10.1301/nr.2007.dec.535-543 DOI: https://doi.org/10.1301/nr.2007.dec.535-543
Martins, C. D. L., F. Ramlov, N. P. Nocchi Carneiro, L. M. Gestinari, B. F. dos Santos, L. M. Bento, C. Lhullier, L. Gouvea, E. Bastos, P. A. Horta y A. R. Soares. 2013. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. Journal of Applied Phycology 25(4): 1179-1187. DOI: https://doi.org/10.1007/s10811-012-9918-x DOI: https://doi.org/10.1007/s10811-012-9918-x
Mehboudi, N., H. R. Rahimi, H. A. Bakhtiari, M. Alimardani y A. Jalili. 2023. The impact of probiotic cell-free metabolites in MDR Pseudomonas aeruginosa: antibacterial properties and effect on antibiotic resistance genes expression. Letters in Applied Microbiology 76(10): ovad111. DOI: https://doi.org/10.1093/LAMBIO/OVAD111 DOI: https://doi.org/10.1093/lambio/ovad111
Morais, T., A, Inácio, T. Coutinho, M. Ministro, J. Cotas, L. Pereira y K. Bahcevandziev. 2020. Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering 8(8): 559. DOI: https://doi.org/10.3390/JMSE8080559 DOI: https://doi.org/10.3390/jmse8080559
Mubashrah, M., M. Arshad, Q. Rahmatullah, M. Sidra y M. Mehmooda. 2020. Preliminary phytochemical screening, proximate analysis, antioxidant and antibacterial activities of an algal species of Hydrodictyon reticulatum. Journal of Bioresource Management 7(4): 1-26. DOI: https://doi.org/10.35691/JBM.0202.0147 DOI: https://doi.org/10.35691/JBM.0202.0147
Murillo-Muñoz, M. y E. J. Peña-Salamanca. 2014. Algas Marinas Bentónicas de La Isla Gorgona, Costa Pacífica Colombiana. Revista de Biología Tropical 62(suppl.1): 27-41. DOI: https://doi.org/10.15517/rbt.v62i0.15977
Narvaez-Izquierdo, J., J. Fonseca-De La Hoz, G. Kannan y J. Bohorquez-Herrera. 2024. Use of macroalgae as a nutritional supplement for sustainable production of ruminants: A systematic review and an insight on the Colombian Caribbean region. Algal Research 77: 103359. DOI: https://doi.org/10.1016/j.algal.2023.103359 DOI: https://doi.org/10.1016/j.algal.2023.103359
Neto, R.T., C. Marçal, A. S. Queirós, H. Abreu, A. M. S. Silva y S. M. Cardoso. 2018. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as functional ingredients. International Journal of Molecular Sciences 19(10): 2987. DOI: https://doi.org/10.3390/ijms19102987 DOI: https://doi.org/10.3390/ijms19102987
Nova, P., A. Pimenta-Martins, E. Maricato, C. Nunes, H. Abreu, M. A. Coimbra, A. C. Freitas y A. M. Gomes. 2023. Chemical Composition and Antioxidant Potential of Five Algae Cultivated in Fully Controlled Closed Systems. Molecules 28(12): 4588. DOI: https://doi.org/10.3390/molecules28124588 DOI: https://doi.org/10.3390/molecules28124588
Olowofolahan, A. O., O. T. Oyebode y O. O. Olorunsogo. 2021. Methyl palmitate reversed estradiol benzoate-induced endometrial hyperplasia in female rats. Toxicology Mechanisms and Methods 31(1): 43-52. DOI: https://doi.org/10.1080/15376516.2020.1827329 DOI: https://doi.org/10.1080/15376516.2020.1827329
Orfanoudaki, M., M. Alilou, A. Hartmann, J. Mayr, U. Karsten, H. Nguyen-Ngoc y M. Ganzera. 2023. Isolation and structure elucidation of novel mycosporine-like amino acids from the two intertidal red macroalgae Bostrychia scorpioides and Catenella caespitosa. Marine Drugs 21(10): 543. DOI: https://doi.org/10.3390/MD21100543 DOI: https://doi.org/10.3390/md21100543
Orfanoudaki, M., A. Hartmann, H. N. Ngoc, T. Gelbrich, J. West, U. Karsten y M. Ganzera. 2020. Mycosporine-like amino acids, brominated and sulphated phenols: Suitable chemotaxonomic markers for the reassessment of classification of Bostrychia calliptera (Ceramiales, Rhodophyta). Phytochemistry 174: 112344. DOI: https://doi.org/10.1016/J.PHYTOCHEM.2020.112344 DOI: https://doi.org/10.1016/j.phytochem.2020.112344
Ortega, A., N. R. Geraldi y C. M. Duarte. 2020. Environmental DNA identifies marine macrophyte contributions to Blue Carbon sediments. Limnology and Oceanography 65(12): 3139-3149. DOI: https://doi.org/10.1002/lno.11579 DOI: https://doi.org/10.1002/lno.11579
Palacios, M. L. y J. R. Cantera. 2017. Uso de madera de manglar como servicio ecosistémico en el Pacífico colombiano. Hidrobiología 803: 345-358. DOI: https://doi.org/10.1007/s10750-017-3309-x DOI: https://doi.org/10.1007/s10750-017-3309-x
Park, E., H. Yu, J. H. Lim, J. Hee Choi, K. J. Park y J. Lee. 2023. Seaweed metabolomics: A review on its nutrients, bioactive compounds and changes in climate change. Food Research International 163: 112221. DOI: https://doi.org/10.1016/j.foodres.2022.112221 DOI: https://doi.org/10.1016/j.foodres.2022.112221
Peña-Salamanca, E. J. 2008. Dinámica especial y temporal de la biomasa algal asociada a las raíces de mangle en la Bahía de Buenaventura, Costa Pacífica de Colombia. Boletín de Investigaciones Marinas y Costeras 37(2): 55-70. DOI: https://doi.org/10.25268/bimc.invemar.2008.37.2.191
Peña-Salamanca, E. J. 2017. El complejo Bostrychietum: la flora de algas asociadas a las raíces del manglar en la costa pacífica colombiana. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 41(160): 338-348. DOI: https://doi.org/10.18257/raccefyn.485 DOI: https://doi.org/10.18257/raccefyn.485
Peñalver, R., J. M. Lorenzo, G. Ros, R. Amarowicz, M. Pateiro y G. Nieto. 2020. Seaweeds as a Functional Ingredient for a Healthy Diet. Marine Drugs 18(6): 301. DOI: https://doi.org/10.3390/MD18060301 DOI: https://doi.org/10.3390/md18060301
Peng, Y., E. Xie, K. Zheng, M. Fredimoses, X. Yang, X. Zhou, Y. Wang, B. Yang, X. Lin, J. Liu y Y. Liu. 2013. Nutritional and chemical composition and antiviral activity of cultivated seaweed sargassum naozhouense Tseng et Lu. Marine Drugs 11(1): 20-32. DOI: https://doi.org/10.3390/md11010020 DOI: https://doi.org/10.3390/md11010020
Regina Hershey, N., S. B. Nandan, P. T. Schwing y K. N. Vasu. 2021. Carbon and nitrogen dynamics in a tropical mangrove along the southwestern coast of India. Marine Ecology 42(5): e12676. DOI: https://doi.org/10.1111/MAEC.12676 DOI: https://doi.org/10.1111/maec.12676
Rios-Marin, F., E. J. Peña Salamanca y R. Benítez Benítez. 2021. Efecto del pH en las tasas de bioacumulación de metales pesados en la macroalga Bostrychia calliptera (Rhodomelaceae, Ceramiales). Acta Biológica Colombiana 26(2): 226-234. DOI: https://doi.org/10.15446/abc.v26n2.84142 DOI: https://doi.org/10.15446/abc.v26n2.84142
Rojas, A. M., C. A. Ruiz-Agudelo, M. C. Diazgranados, H. Polanco y R. Anderson. 2019. Approach to an integral valuation of mangrove’s ecosystem services in a marine protected area. Colombian Pacific region. Journal of Environmental Economics and Policy 8(3): 322-342. DOI: https://doi.org/10.1080/21606544.2019.1584127 DOI: https://doi.org/10.1080/21606544.2019.1584127
Salgado, H. M. y E. J. Peña-Salamanca. 2016. Macroalgas Bénticas de La Bahía de Tumaco, Pacífico Colombiano. Hidrobiológica 26(2): 299-309. DOI: https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n2/Marin
Sherman, R. E., T. J. Fahey y R. W. Howarth. 1998. Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115(4): 553-563. DOI: https://doi.org/10.1007/s004420050553 DOI: https://doi.org/10.1007/s004420050553
Shukla, P. S., E. G. Mantin, M. Adil, S. Bajpai, A. T. Critchley y B. Prithiviraj. 2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10: 655. DOI: https://doi.org/10.3389/fpls.2019.00655 DOI: https://doi.org/10.3389/fpls.2019.00655
Silva, P. I., G. Martínez, M. Martínez y G. Quiñones. 2020. Análisis fitoquímico y evaluación de la actividad antioxidante y antifúngica de Asphodellus fistulosus L. Investigación Científica 14(2): 120-130.
Thompson, T. M., B. R. Young y S. Baroutian. 2020. Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados. Renewable and Sustainable Energy Reviews 118: 109564. DOI: https://doi.org/10.1016/j.rser.2019.109564 DOI: https://doi.org/10.1016/j.rser.2019.109564
Torres, P., A. Nagai, D. I. A. Teixeira, E. Marinho-Soriano, F. Chow y D. Y. A. dos Santos. 2019. Brazilian native species of Gracilaria (Gracilariales, Rhodophyta) as a source of valuable compounds and as nutritional supplements. Journal of Applied Phycology 31(5): 3163-3173. DOI: https://doi.org/10.1007/s10811-019-01804-x DOI: https://doi.org/10.1007/s10811-019-01804-x
Toth, G. B., H. Harrysson, N. Wahlström, J. Olsson, A. Oerbekke, S. Steinhagen, A. Kinnby, J. White, E. Albers, U. Edlund, I. Undeland y H. Pavia. 2020. Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. Journal of Applied Phycology 32: 3243-3254. DOI: https://doi.org/10.1007/s10811-020-02155-8 DOI: https://doi.org/10.1007/s10811-020-02155-8
Uddin, S. J., D. Grice y E. Tiralongo. 2012. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharmaceutical Biology 50(10): 1276-1280. DOI: https://doi.org/10.3109/13880209.2012.673628 DOI: https://doi.org/10.3109/13880209.2012.673628
Urrea-Victoria, V., V. Geraldes, E. Pinto y L. Castellanos. 2023. Photosynthetic pigments and photoprotective metabolites of Colombian pacific marine macroalgae in response to contrasting ultraviolet-index periods. Journal of Experimental Marine Biology and Ecology 564: 151908. DOI: https://doi.org/10.1016/J.JEMBE.2023.151908 DOI: https://doi.org/10.1016/j.jembe.2023.151908
Vallejo, S. V., A. M. Rojas, R. Linnakoski y J. A. Osorio. 2024. Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia 46(1): 33-44. DOI: https://doi.org/10.15446/caldasia.v46n1.97134 DOI: https://doi.org/10.15446/caldasia.v46n1.97134
Wan, A. H. L., S. J. Davies, A. Soler-Vila, R. Fitzgerald y M. P. Johnson. 2019. Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture 11(3): 458-492. DOI: https://doi.org/10.1111/raq.12241 DOI: https://doi.org/10.1111/raq.12241
Wen, X., C. Peng, H. Zhou, Z. Lin, G. Lin, S. Chen y P. Li. 2006. Nutritional composition and assessment of Gracilaria lemaneiformis Bory. Journal of Integrative Plant Biology 48(9): 1047-1053. DOI: https://doi.org/10.1111/j.1744-7909.2006.00333.x DOI: https://doi.org/10.1111/j.1744-7909.2006.00333.x

Publicado
Cómo citar
-
Resumen223
-
PDF44
-
EPUB3
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Acta Botanica Mexicana reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto. Acta Botanica Mexicana no realiza cargos a los autores por enviar y procesar artículos para su publicación.
Todos los textos publicados por Acta Botanica Mexicana –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Acta Botanica Mexicana (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en Acta Botanica Mexicana.
Para todo lo anterior, el corrector de originales le solicitará junto con la revisión de galeras, que expida su Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Esta carta se debe enviar por correo electrónico en archivo pdf al correo: acta.botanica@inecol.mx (Carta-Cesión de Propiedad de Derechos de Autor).