Compuestos químicos funcionales en el maíz morado (Zea mays): una revisión bibliográfica

Autores/as

DOI:

https://doi.org/10.21829/abm132.2025.2439

Palabras clave:

alimentos funcionales, antioxidantes, antocianinas, pigmentos

Resumen

Antecedentes y Objetivos: El maíz morado (Zea mays) es una variedad nativa de América, rica en compuestos fenólicos, principalmente antocianinas, y otros compuestos fitoquímicos funcionales. En los últimos años ha tenido un incremento en su consumo y distribución, ya que además de que es símbolo gastronómico de varias localidades de México por sus propiedades bioquímicas y potencial nutricional, ha despertado la curiosidad de varios grupos de investigación en distintas partes del mundo. Con la finalidad de destacar las características de los compuestos químicos funcionales, principalmente antocianinas y antioxidantes del maíz morado, se realizó este trabajo de revisión bibliográfica.

Métodos: Se efectuó un análisis bibliométrico utilizando la base de datos Scopus para identificar publicaciones relevantes relacionadas con los términos “Purple corn” y “Anthocyanins”. Los metadatos fueron procesados con VOSviewer para construir redes de co-ocurrencia de palabras clave y analizar tendencias de investigación.

Resultados clave: El análisis bibliométrico reveló 308 documentos clave, publicados entre 1979 y 2024, y permitió delinear cuatro temas principales: antocianinas, compuestos antioxidantes, valor nutricional y beneficios para la salud. El maíz morado destacó por su elevado contenido de antocianinas (ca. 1430 mg/100 g), especialmente derivados glucosilados de cianidina, pelargonidina y peonidina, cuya biosíntesis se relaciona con factores ambientales. Los principales compuestos antioxidantes fueron ácido ferúlico y derivados de quercetina, con notable capacidad antioxidante (ca. 271.33 mg GAE/g). Respecto a su composición nutricional, el maíz morado sobresale en carbohidratos, proteínas y fibra. Además, diversos estudios vinculan su consumo con efectos antiobesidad, antiinflamatorios, antidiabéticos, cardioprotectores, anticancerígenos, entre otros beneficios.

Conclusiones: El maíz morado es un alimento funcional con importantes beneficios para la salud, respaldado por estudios científicos que enfatizan sus propiedades antioxidantes y calidad nutricional. La investigación realizada ha permitido reconocer su potencial en la industria alimentaria y farmacéutica, y resaltar la importancia de continuar investigando sus propiedades bioactivas y aplicaciones nutraceúticas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agama-Acevedo, E., Y. Salinas-Moreno, G. Pacheco-Vargas y L. A. Bello-Pérez. 2011. Características físicas y químicas de dos razas de maíz azul: morfología del almidón. Revista Mexicana de Ciencias Agrícolas 2(3): 317-329.

Aguilar-Hernández, Á. D., Y. Salinas-Moreno, J. L. Ramírez-Díaz, I. Alemán-De la Torre, E. Bautista-Ramírez y H. E. Flores-López. 2019. Antocianinas y color en grano y olote de maíz morado peruano cultivado en Jalisco, México. Revista Mexicana de Ciencias Agrícolas 10(5): 1071-1082. DOI: https://doi.org/10.29312/remexca.v10i5.1828 DOI: https://doi.org/10.29312/remexca.v10i5.1828

Aoki, H., N. Kuze y Y. Kato. 2002. Anthocyanins isolated from purple corn (Zea mays L.). Foods and Food Ingredients Journal of Japan 199: 41-45.

Asokapandian, S., S. Periasamy y G. J. Swamy. 2018. Ozone for fruit juice preservation. In: Rajauria, G. y B. K. Tiwari (eds.). Fruit juices: extraction, composition, quality and analysis. Academic Press. Cambridge, USA. Pp. 511-527. DOI: https://doi.org/10.1016/B978-0-12-802230-6.00025-4 DOI: https://doi.org/10.1016/B978-0-12-802230-6.00025-4

Barba, F. J., H. N. Rajha, E. Debs, A. M. Abi-Khattar, S. Khabbaz, B. N. Dar, M. J. Simirgiotis, J. M. Castagnini, R. G. Maroun y N. Louka. 2022. Optimization of polyphenols’ recovery from purple corn cobs assisted by infrared technology and use of extracted anthocyanins as a natural colorant in pickled turnip. Molecules 27(16): 5222. DOI: https://doi.org/10.3390/molecules27165222 DOI: https://doi.org/10.3390/molecules27165222

Bayomy, H. M. 2017. Sensory, nutritional and popping qualities of yellow and purple popcorn. Journal of Food and Dairy Sciences, Mansoura University 8(8): 361-367. DOI: https://doi.org/10.21608/jfds.2017.38903 DOI: https://doi.org/10.21608/jfds.2017.38903

Bueno, J. M., P. Sáez-Plaza, F. Ramos-Escudero, A. M. Jiménez, R. Fett y A. G. Asuero. 2012. Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry 42(2): 126-151. DOI: https://doi.org/10.1080/10408347.2011.632314 DOI: https://doi.org/10.1080/10408347.2011.632314

Bureau, S., C. M. G. C. Renard, M. Reich, C. Ginies y J. M. Audergon. 2009. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Science and Technology 42(1): 372-377. DOI: https://doi.org/10.1016/j.lwt.2008.03.010 DOI: https://doi.org/10.1016/j.lwt.2008.03.010

Cai, T., S. Ge-Zhang y M. Song. 2023. Anthocyanins in metabolites of purple corn. Frontiers in Plant Science 14: 1154535. DOI: https://doi.org/10.3389/fpls.2023.1154535 DOI: https://doi.org/10.3389/fpls.2023.1154535

Carrera, E. J., M. J. Cejudo-Bastante, N. Hurtado, F. J. Heredia y M. L. González-Miret. 2023. Revalorization of Colombian purple corn Zea mays L. by-products using two-step column chromatography. Food Research International 169: 112931. DOI: https://doi.org/10.1016/j.foodres.2023.112931 DOI: https://doi.org/10.1016/j.foodres.2023.112931

Cevallos-Casals, B. A. y L. Cisneros-Zevallos. 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agricultural and Food Chemistry 51(11): 3313-3319. DOI: https://doi.org/10.1021/jf034109c DOI: https://doi.org/10.1021/jf034109c

Chamizo-González, F., I. García Estévez, B. Gordillo, E. Manjón, M. T. Escribano-Bailón, F. J. Heredia y M. L. González-Miret. 2023. First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chemistry 413: 135591. DOI: https://doi.org/10.1016/j.foodchem.2023.135591 DOI: https://doi.org/10.1016/j.foodchem.2023.135591

Chatham, L. A., L. West, M. A. Berhow, K. E. Vermillion y J. A. Juvik. 2018. Unique flavanol-anthocyanin condensed forms in Apache Red purple corn. Journal of Agricultural and Food Chemistry 66(41): 10844-10854. DOI: https://doi.org/10.1021/acs.jafc.8b04723 DOI: https://doi.org/10.1021/acs.jafc.8b04723

Chayati, I., S. Sunarti, Y. Marsono y M. Astuti. 2019. Anthocyanin extract of purple corn improves hyperglycemia and insulin resistance of rats fed high fat and fructose diet via GLP1 and GLP1R mechanism. Journal of Food and Nutrition Research 7(4): 303-310. DOI: https://doi.org/10.12691/jfnr-7-4-7 DOI: https://doi.org/10.12691/jfnr-7-4-7

Chen, P. N., S. C. Chu, H. L. Chiou, C. L. Chiang, S. F. Yang y Y. S. Hsieh. 2005. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutrition and Cancer 53(2): 232-243. DOI: https://doi.org/10.1207/s15327914nc5302_12 DOI: https://doi.org/10.1207/s15327914nc5302_12

Christie, P. J., M. R. Alfenito y V. Walbot. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194: 541-549. DOI: https://doi.org/10.1007/BF00714468 DOI: https://doi.org/10.1007/BF00714468

Chuntakaruk, H., P. Kongtawelert y P. Pothacharoen. 2021. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Scientific Reports 11(1): 1895. DOI: https://doi.org/10.1038/s41598-021-81384-4 DOI: https://doi.org/10.1038/s41598-021-81384-4

Cristianini, M. y J. S. Guillén Sánchez. 2020. Extraction of bioactive compounds from purple corn using emerging technologies: a review. Journal of Food Science 85(4): 862-869. DOI: https://doi.org/10.1111/1750-3841.15074 DOI: https://doi.org/10.1111/1750-3841.15074

Cuevas Montilla, E., S. Hillebrand, A. Antezana y P. Winterhalter. 2011. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry 59(13): 7068-7074. DOI: https://doi.org/10.1021/jf201061x DOI: https://doi.org/10.1021/jf201061x

Cui, H. X., Y. Luo, Y. Y. Mao, K. Yuan, S. H. Jin, X. T. Zhu y B. W. Zhong. 2021. Purified anthocyanins from Zea mays L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. Journal of the Science of Food and Agriculture 101(11): 4672-4680. DOI: https://doi.org/10.1002/jsfa.11112 DOI: https://doi.org/10.1002/jsfa.11112

Del Pozo-Insfran, D., C. H. Brenes, S. O. Serna Saldivar y S. T. Talcott. 2006. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Research International 39(6): 696-703. DOI: https://doi.org/10.1016/j.foodres.2006.01.014 DOI: https://doi.org/10.1016/j.foodres.2006.01.014

Devi, A., A. A. Konerira Aiyappaa y A. L. Waterhouse. 2020. Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution. Journal of the Science of Food and Agriculture 100(5): 2110-2120. DOI: https://doi.org/10.1002/jsfa.10234 DOI: https://doi.org/10.1002/jsfa.10234

Díaz-García, A., B. Salvá-Ruíz, N. Bautista-Cruz y L. Condezo-Hoyos. 2021. Optimization of a natural low-calorie antioxidant tea prepared from purple corn (Zea mays L.) cobs and stevia (Stevia rebaudiana Bert.). LWT-Food Science and Technology 150: 111952. DOI: https://doi.org/10.1016/j.lwt.2021.111952 DOI: https://doi.org/10.1016/j.lwt.2021.111952

Dixon, R. A., L. Achnine, P. Kota, L. Chang-Jun, M. S. Sirinivasa Reddy y L. Wang. 2002. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology 3(5): 371-390. DOI: https://doi.org/10.1046/j.1364-3703.2002.00131.x DOI: https://doi.org/10.1046/j.1364-3703.2002.00131.x

Estévez, L. y R. A. Mosquera. 2007. A density functional theory study on pelargonidin. The Journal of Physical Chemistry A 111(43): 11100-11109. DOI: https://doi.org/10.1021/jp074941a DOI: https://doi.org/10.1021/jp074941a

Fan, X., B. Fan, Y. Wang y W. Yang. 2016. Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm. Plant Biotechnology Reports 10: 1-11. DOI: https://doi.org/10.1007/s11816-015-0382-3 DOI: https://doi.org/10.1007/s11816-015-0382-3

Feregrino-Pérez, A. A., A. Mercado-Luna, C. A. Murillo-Cárdenas, R. González-Santos, J. L. Chávez-Servín, A. F. Vargas-Madriz y E. Luna-Sánchez. 2024. Polyphenolic compounds and antioxidant capacity in native maize of the Sierra Gorda of Querétaro. Agronomy 14(1): 142. DOI: https://doi.org/10.3390/agronomy14010142 DOI: https://doi.org/10.3390/agronomy14010142

Finkel, M. L., S. Sanchez, T. Mak, J. Granstein y A. Lefkowitz. 2013. Anthocyanin-rich purple corn extract and its effects on the blood pressure of adults. Journal of Evidence-Based Complementary & Alternative Medicine 18(4): 237-242. DOI: https://doi.org/10.1177/2156587213482942 DOI: https://doi.org/10.1177/2156587213482942

Galvano, F., L. La Fauci, G. Lazzarino, V. Fogliano, A. Ritieni, S. Ciappellano, N. C. Battistini, B. Tavazzi y G. Galvano. 2004. Cyanidins: metabolism and biological properties. The Journal of Nutritional Biochemistry 15(1): 2-11. DOI: https://doi.org/10.1016/j.jnutbio.2003.07.004 DOI: https://doi.org/10.1016/j.jnutbio.2003.07.004

Galvano, F., L. La Fauci, P. Vitaglione, V. Fogliano, L. Vanella y C. Felgines. 2007. Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Annali dell'Istituto Superiore di Sanità 43(4): 382-393.

Ghattamaneni, N. K. R., A. Sharma, S. K. Panchal y L. Brown. 2020. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. European Journal of Nutrition 59(7): 2905-2918. DOI: https://doi.org/10.1007/s00394-019-02130-1 DOI: https://doi.org/10.1007/s00394-019-02130-1

Goodman, C. D., P. Casati y V. Walbot. 2004. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. The Plant Cell 16(7): 1812-1826. DOI: https://doi.org/10.1105/tpc.022574 DOI: https://doi.org/10.1105/tpc.022574

Gorriti Gutierrez, A., J. Arroyo Acevedo, L. Negron Ballarte, B. Jurado Teixeira, H. Purizaca Llajaruna, I. Santiago Aquise, E. Taype Espinoza y F. Quispe Jacobo. 2009. Antocianinas, fenoles totals y actividad antioxidante de las corontas del maíz morado (Zea mays L.): Método de extracción. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 8(6): 509-518.

Guillén Sánchez, J. S., C. B. Betim Cazarin, M. R. Canesin, F. Reyes Reyes, A. H. Iglesias y M. Cristianini. 2023. Extraction of bioactive compounds from Peruvian purple corn cob (Zea mays L.) by dynamic high pressure. Scientia Agropecuaria 14(3): 367-373. DOI: https://doi.org/10.17268/sci.agropecu.2023.032 DOI: https://doi.org/10.17268/sci.agropecu.2023.032

Guillén-Sánchez, J., S. Mori-Arismendi y L. M. Paucar-Menacho. 2014. Características y propiedades funcionales del maíz morado (Zea mays L.) var. subnigroviolaceo. Scientia Agropecuaria 5(4): 211-217. DOI: https://doi.org/10.17268/sci.agropecu.2014.04.05 DOI: https://doi.org/10.17268/sci.agropecu.2014.04.05

Guo, G., Y. Wang, B. Zhang, H. Yu, L. Li, G. Cao, B. chen, C. Li, F. Bu, S. Teng, Q. Yu, M. Gao, B. Jiang y K. Yang. 2024. Comparative transcriptomic and metabolomic analysis reveals mechanisms of selenium-regulated anthocyanin synthesis in waxy maize (Zea mays L.). Frontiers in Plant Science 15: 1466756. DOI: https://doi.org/10.3389/fpls.2024.1466756 DOI: https://doi.org/10.3389/fpls.2024.1466756

Hao, R., S. Shan, D. Yang, H. Zhang, Y. Sun y Z. Li. 2023. Peonidin-3-O-glucoside from purple corncob ameliorates nonalcoholic fatty liver disease by regulating mitochondrial and lysosome functions to reduce oxidative stress and inflammation. Nutrients 15(2): 372. DOI: https://doi.org/10.3390/nu15020372 DOI: https://doi.org/10.3390/nu15020372

Harakotr, B., B. Suriharn, R. Tangwongchai, M. P. Scott y K. Lertrat. 2014. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chemistry 164: 510-517. DOI: https://doi.org/10.1016/j.foodchem.2014.05.069 DOI: https://doi.org/10.1016/j.foodchem.2014.05.069

He, F., L. Mu, G. L. Yan, N. N. Liang, Q. H. Pan, J. Wang, M. J. Reeves y C. Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15(12): 9057-9091. DOI: https://doi.org/10.3390/molecules15129057 DOI: https://doi.org/10.3390/molecules15129057

Holton, T. A. y E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7(7): 1071-1083. DOI: https://doi.org/10.1105/tpc.7.7.1071 DOI: https://doi.org/10.2307/3870058

Hong, H. T., M. E. Netzel y T. J. O’Hare. 2020. Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chemistry 319: 126515. DOI: https://doi.org/10.1016/j.foodchem.2020.126515 DOI: https://doi.org/10.1016/j.foodchem.2020.126515

Huang, B., Z. Wang, J. H. Park, O. H. Ryu, M. K. Choi, J. Y. Lee, Y. H. Kang y S. S. Lim. 2015. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutrition Research and Practice 9(1): 22-29. DOI: https://doi.org/10.4162/nrp.2015.9.1.22 DOI: https://doi.org/10.4162/nrp.2015.9.1.22

Jing, P., V. Noriega, S. J. Schwartz y M. M. Giusti. 2007. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. Journal of Agricultural and Food Chemistry 55(21): 8625-8629. DOI: https://doi.org/10.1021/jf070755q DOI: https://doi.org/10.1021/jf070755q

Kallithraka, S., L. Aliaj, D. P. Makris y P. Kefalas. 2009. Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. International Journal of Food Science & Technology 44(12): 2385-2393. DOI: https://doi.org/10.1111/j.1365-2621.2008.01869.x DOI: https://doi.org/10.1111/j.1365-2621.2008.01869.x

Khoo, H. E., A. Azlan, S. T. Tang y S. M. Lim. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61: 1361779. DOI: https://doi.org/10.1080/16546628.2017.1361779 DOI: https://doi.org/10.1080/16546628.2017.1361779

Kim, H. Y., K. Y. Lee, M. Kim, M. Hong, P. Deepa y S. Kim. 2023. A review of the biological properties of purple corn (Zea mays L.). Scientia Pharmaceutica 91(1): 6. DOI: https://doi.org/10.3390/scipharm91010006 DOI: https://doi.org/10.3390/scipharm91010006

Kooshki, L., S. Fakhri, F. Abbaszadeh, A. Kiani, M. H. Farzaei, E. Mohammadi-Noori y J. Echeverria. 2025. Pelargonidin improves functional recovery and attenuates neuropathic pain following spinal cord injury in rats: relevance to its neuroprotective, antioxidant, and anti-inflammatory effects. Frontiers in Pharmacology 16: 1547187. DOI: https://doi.org/10.3389/fphar.2025.1547187 DOI: https://doi.org/10.3389/fphar.2025.1547187

Kurambhatti, C., D. Kumar, K. D. Rausch, M. E. Tumbleson y V. Singh. 2020. Improving technical and economic feasibility of water-based anthocyanin recovery from purple corn using staged extraction approach. Industrial Crops and Products 158: 112976. DOI: https://doi.org/10.1016/j.indcrop.2020.112976 DOI: https://doi.org/10.1016/j.indcrop.2020.112976

Kurt-Celebi, A., N. Colak, S. Hayirlioglu-Ayaz, S. K. Veličkovska, F. Ilieva, T. Esatbeyoglu y F. A. Ayaz. 2020. Accumulation of phenolic compounds and antioxidant capacity during berry development in black ‘Isabel’ grape (Vitis vinifera L. x Vitis labrusca L.). Molecules 25(17): 3845. DOI: https://doi.org/10.3390/molecules25173845 DOI: https://doi.org/10.3390/molecules25173845

Lao, F., G. T. Sigurdson y M. M. Giusti. 2017. Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety 16(2): 234-246. DOI: https://doi.org/10.1111/1541-4337.12249 DOI: https://doi.org/10.1111/1541-4337.12249

Lao, F. y M. M. Giusti. 2018. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. Journal of Cereal Science 80: 87-93. DOI: https://doi.org/10.1016/j.jcs.2018.01.001 DOI: https://doi.org/10.1016/j.jcs.2018.01.001

Lee, J. H. y M. G. Choung. 2011. Identification and characterisation of anthocyanins in the antioxidant activity-containing fraction of Liriope platyphylla fruits. Food Chemistry 127(4): 1686-1693. DOI: https://doi.org/10.1016/j.foodchem.2011.02.037 DOI: https://doi.org/10.1016/j.foodchem.2011.02.037

Lefevre, M., N. Hergert y A. Zuberi. 2011. Reduced weight gain and adiposity with addition of anthocyanin-rich purple corn extract to a high fat diet is associated with changes in intestinal microbiota in C57BL/6 mice. The FASEB Journal 25 (S1): 224.7. DOI: https://doi.org/10.1096/fasebj.25.1_supplement.224.7 DOI: https://doi.org/10.1096/fasebj.25.1_supplement.224.7

Leiva González, S., G. Gayoso Bazán y L. Chang Chávez. 2016. Zea mays L. “maíz morado” (Poaceae), un cereal utilizado como alimento en el Perú prehispánico. Arnaldoa 23(1): 295-316. DOI: https://doi.org/10.22497/arnaldoa.232.23212

Li, Q., P. Somavat, V. Singh, L. Chatham y E. Gonzalez de Mejia. 2017. A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. Food Chemistry 231: 332-339. DOI: https://doi.org/10.1016/j.foodchem.2017.03.146 DOI: https://doi.org/10.1016/j.foodchem.2017.03.146

Li, T., Y. Wang, Q. Dong, F. Wang, F. Kong, G. Liu, Y. Lei, H. Yang, Y. Zhou y C. Li. 2022. Weighted gene co-expression network analysis reveals key module and hub genes associated with the anthocyanin biosynthesis in maize pericarp. Frontiers in Plant Science 13: 1013412. DOI: https://doi.org/10.3389/fpls.2022.1013412 DOI: https://doi.org/10.3389/fpls.2022.1013412

Li, W., M. Gu, P. Gong, J. Wang, Y. Hu, Y. Hu, X. Tan, J. Wei y H. Yang. 2021. Glycosides changed the stability and antioxidant activity of pelargonidin. LWT- Food Science and Technology 147: 111581. https://doi.org/10.1016/j.lwt.2021.111581 DOI: https://doi.org/10.1016/j.lwt.2021.111581

Liang, Y., M. U. Farooq, Y. Hu, Z. Tang, Y. Zhang, R. Zeng, T. Zheng, H. H. Ei, X. Ye, X. Jia y J. Zhu. 2018. Study on stability and antioxidant activity of red anthocyanidin glucoside rich hybrid rice, its nutritional and physicochemical characteristics. Food Science and Technology Research 24(4): 687-696. DOI: https://doi.org/10.3136/FSTR.24.687 DOI: https://doi.org/10.3136/fstr.24.687

Lopez-Martinez, L. X., R. M. Oliart-Ros, G. Valerio-Alfaro, C. H. Lee, K. L. Parkin y H. S. Garcia. 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Science and Technology 42(6): 1187-1192. DOI: https://doi.org/10.1016/j.lwt.2008.10.010 DOI: https://doi.org/10.1016/j.lwt.2008.10.010

Luna-Vital, D. A. y E. Gonzalez de Mejia. 2018. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 13(7): e0200449. DOI: https://doi.org/10.1371/journal.pone.0200449 DOI: https://doi.org/10.1371/journal.pone.0200449

Luna-Vital, D., I. Luzardo-Ocampo, M. L. Cuellar-Nuñez, G. Loarca-Piña y E. G. de Mejia. 2020. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. The Journal of Nutritional Biochemistry 79: 108343. DOI: https://doi.org/10.1016/j.jnutbio.2020.108343 DOI: https://doi.org/10.1016/j.jnutbio.2020.108343

Luna-Vital, D., M. Weiss y E. Gonzalez de Mejia. 2017. Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Molecular Nutrition & Food Research 61(12): 1700362. DOI: https://doi.org/10.1002/mnfr.201700362 DOI: https://doi.org/10.1002/mnfr.201700362

Magaña Cerino, J. M., H. A. Peniche Pavía, A. Tiessen y C. M. Gurrola Díaz. 2020. Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress - a review. Polish Journal of Food and Nutrition Sciences 70(2): 85-99. DOI: https://doi.org/10.31883/pjfns/113272 DOI: https://doi.org/10.31883/pjfns/113272

Martens, S., N. Mateus y V. De Freitas. 2014. Special issue on anthocyanins. Planta 240: 899. DOI: https://doi.org/10.1007/s00425-014-2185-0 DOI: https://doi.org/10.1007/s00425-014-2185-0

Mattioli, R., A. Francioso, L. Mosca y P. Silva. 2020. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25(17): 3809. DOI: https://doi.org/10.3390/molecules25173809 DOI: https://doi.org/10.3390/molecules25173809

Mazewski, C., K. Liang y E. Gonzalez de Mejia. 2017. Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. Journal of Functional Foods 34: 254-265. DOI: https://doi.org/10.1016/j.jff.2017.04.038 DOI: https://doi.org/10.1016/j.jff.2017.04.038

Medina-Hoyos, A., L. Narro-León y A. Chávez-Cabrera. 2020. Cultivo de maíz morado (Zea mays L.) en zona altoandina de Perú: adaptación e identificación de cultivares de alto rendimiento y contenido de antocianina. Scientia Agropecuaria 11(3): 291-299. DOI: https://doi.org/10.17268/sci.agropecu.2020.03.01 DOI: https://doi.org/10.17268/sci.agropecu.2020.03.01

Mendoza-Mendoza, C. G., R. M. Soto-Hernández, M. C. Mendoza-Castillo, A. Delgado-Alvarado y F. J. Sánchez-Ramírez. 2023. Foods and beverages made from Mexican purple corn: a means to increase anthocyanins’ intake. Functional Foods in Health and Disease 13(11): 632-647. DOI: https://doi.org/10.31989/ffhd.v13i11.1194 DOI: https://doi.org/10.31989/ffhd.v13i11.1194

Meng, L. S., B. Li, D. N. Li, Y. H. Wang, Y. Lin, X. J. Meng, X. Y. Sun y N. Liu. 2017. Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. Journal of Functional Foods 38A: 474-485. DOI: https://doi.org/10.1016/j.jff.2017.09.025 DOI: https://doi.org/10.1016/j.jff.2017.09.025

Merecz-Sadowska, A., P. Sitarek, T. Kowalczyk, K. Zajdel, M. Jęcek, P. Nowak y R. Zajdel. 2023. Food anthocyanins: malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients 15(13): 3016. DOI: https://doi.org/10.3390/nu15133016 DOI: https://doi.org/10.3390/nu15133016

Mex-Álvarez, R. M. J., P. M. Garma-Quen, N. J. Bolívar-Fernández y M. M. Guillén-Morales. 2016. Análisis proximal y fitoquímico de cinco variedades de maíz del estado de Campeche (México). Revista Latinoamericana de Recursos Naturales 12(2): 74-80.

Monroy, Y. M., R. A. F. Rodrigues, A. Sartoratto y F. A. Cabral. 2016. Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO₂, ethanol, and water as solvents. The Journal of Supercritical Fluids 107: 250-259. DOI: https://doi.org/10.1016/j.supflu.2015.09.020 DOI: https://doi.org/10.1016/j.supflu.2015.09.020

Mrad, R., E. Debs, R. Saliba, R. G. Maroun y N. Louka. 2014. Multiple optimization of chemical and textural properties of roasted expanded purple maize using response surface methodology. Journal of Cereal Science 60(2): 397-405. DOI: https://doi.org/10.1016/j.jcs.2014.05.005 DOI: https://doi.org/10.1016/j.jcs.2014.05.005

Olivas-Aguirre, F. J., J. Rodrigo-García, N. D. R. Martínez-Ruiz, A. I. Cárdenas-Robles, S. O. Mendoza-Díaz, E. Álvarez-Parrilla, G. A. González-Aguilar, L. A. De la Rosa, A. Ramos-Jiménez y A. Wall-Medrano. 2016. Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 21(9): 1264. DOI: https://doi.org/10.3390/molecules21091264 DOI: https://doi.org/10.3390/molecules21091264

Ortega, G. M. y M. Guerra. 2006. Separación, caracterización estructural y cuantificación de antocianinas mediante métodos químico-físicos. Parte II. ICIDCA. Sobre los Derivados de la Caña de Azúcar XL(3): 3-11.

Park, N. II., H. Xu, X. Li, I. H. Jang, S. Park, G. H. Ahn, Y. P. Lim, S. J. Kim y S. U. Park. 2011. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). Journal of Agricultural and Food Chemistry 59(11): 6034-6039. DOI: https://doi.org/10.1021/jf200824c DOI: https://doi.org/10.1021/jf200824c

Paucar-Menacho, L. M., C. Martínez-Villaluenga, M. Dueñas, J. Frias y E. Peñas. 2017. Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT-Food Science and Technology 76B: 236-244. DOI: https://doi.org/10.1016/j.lwt.2016.07.064 DOI: https://doi.org/10.1016/j.lwt.2016.07.064

Paun, N., O. R. Botoran y V. C. Niculescu. 2022. Total phenolic, anthocyanins HPLC-DAD-MS determination and antioxidant capacity in black grape skins and blackberries: a comparative study. Applied Sciences 12(2): 936. DOI: https://doi.org/10.3390/app12020936 DOI: https://doi.org/10.3390/app12020936

Pedreschi, R. y L. Cisneros-Zevallos. 2006. Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). Journal of Agricultural and Food Chemistry 54(13): 4557-4567. DOI: https://doi.org/10.1021/jf0531050 DOI: https://doi.org/10.1021/jf0531050

Pedreschi, R. y L. Cisneros-Zevallos. 2007. Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry 100(3): 956-963. DOI: https://doi.org/10.1016/j.foodchem.2005.11.004 DOI: https://doi.org/10.1016/j.foodchem.2005.11.004

Peniche-Pavía, H. A. y A. Tiessen. 2020. Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. Journal of Agricultural and Food Chemistry 68(21): 5980-5994. DOI: https://doi.org/10.1021/acs.jafc.9b06336 DOI: https://doi.org/10.1021/acs.jafc.9b06336

Petroni, K., M. Trinei, M. Fornari, V. Calvenzani, A. Marinelli, L. A. Micheli, R. Pilu, A. Matros, H.-P. Mock, C. Tonelli y M. Giorgio. 2017. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutrition, Metabolism and Cardiovascular Diseases 27(5): 462-469. DOI: https://doi.org/10.1016/j.numecd.2017.02.002 DOI: https://doi.org/10.1016/j.numecd.2017.02.002

Ramos-Escudero, F., A. M. Muñoz, C. Alvarado-Ortíz, A. Alvarado y J. A. Yáñez. 2012. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of Medicinal Food 15(2): 206-215. DOI: https://doi.org/10.1089/jmf.2010.0342 DOI: https://doi.org/10.1089/jmf.2010.0342

Ranilla, L. G., B. A. Rios-Gonzales, M. F. Ramírez-Pinto, C. Fuentealba, R. Pedreschi y K. Shetty. 2021. Primary and phenolic metabolites analyses, in vitro health-relevant bioactivity and physical characteristics of purple corn (Zea mays L.) grown at two Andean geographical locations. Metabolites 11(11): 722. DOI: https://doi.org/10.3390/metabo11110722 DOI: https://doi.org/10.3390/metabo11110722

Rashed, E. R., T. El-Hamoly, M. M. El-Sheikh y M. A. El-Ghazaly. 2022. Pelargonidin ameliorates reserpine-induced neuronal mitochondrial dysfunction and apoptotic cascade: a comparative in vivo study. Drug and Chemical Toxicology 46(3): 462-471. DOI: https://doi.org/10.1080/01480545.2022.2050750 DOI: https://doi.org/10.1080/01480545.2022.2050750

Ratha, J., C. Yongram, P. Panyatip, P. Powijitkul, P. Siriparu, S. Datham, A. Priprem, T. Srisongkram y P. Puthongking. 2023. Polyphenol and tryptophan contents of purple corn (Zea mays L.) variety KND and butterfly pea (Clitoria ternatea) aqueous extracts: insights into phytochemical profiles with antioxidant activities and PCA analysis. Plants 12(3): 603. DOI: https://doi.org/10.3390/plants12030603 DOI: https://doi.org/10.3390/plants12030603

Rodríguez, M. D., L. Monsierra, P. S. Mansilla, G. T. Pérez y S. de Pascual-Teresa. 2024. Phenolic characterization of a purple maize (Zea mays cv. “Moragro”) by HPLC-QTOF-MS and study of its bioaccessibility using a simulated in vitro digestion/Caco-2 culture model. Journal of Agricultural and Food Chemistry 72(12): 6327-6338. DOI: https://doi.org/10.1021/acs.jafc.3c08960 DOI: https://doi.org/10.1021/acs.jafc.3c08960

Rodríguez Pérez, G., A. García Ramírez, F. de J. Reynaga Franco, J. E. Mendivil Mendoza, F. J. Salazar Huerta y D. M. Hidalgo Ramos. 2023. Composición fisicoquímica en granos de maíz morado mejorado (Zea mays L.) en el sur de Sonora, como alternativa funcional a la salud humana. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 4(1): 4327-4340. DOI: https://doi.org/10.56712/latam.v4i1.567 DOI: https://doi.org/10.56712/latam.v4i1.567

Rolandelli, G., L. C. Favre, T. R. Aguirre-Calvo, A. E. Farroni, M. del P. Buera y C. dos Santos Ferreira. 2023. An optimized purple corn cob extract as an ingredient for the development of maize-based extrudates with novel characteristics. Journal of Cereal Science 114: 103809. DOI: https://doi.org/10.1016/j.jcs.2023.103809 DOI: https://doi.org/10.1016/j.jcs.2023.103809

Sadowska-Bartosz, I. y G. Bartosz. 2024. Antioxidant activity of anthocyanins and anthocyanidins: a critical review. International Journal of Molecular Sciences 25(22): 12001. DOI: https://doi.org/10.3390/ijms252212001 DOI: https://doi.org/10.3390/ijms252212001

Saikaew, K., K. Lertrat, M. Meenune y R. Tangwongchai. 2018. Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chemistry 243: 328-337. DOI: https://doi.org/10.1016/j.foodchem.2017.09.136 DOI: https://doi.org/10.1016/j.foodchem.2017.09.136

Salinas Moreno, Y., C. García Salinas, B. Coutiño Estrada y V. Vidal Martínez. 2013. Variabilidad en contenido y tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Revista Fitotecnia Mexicana 36(S3-A): 285-294. DOI: https://doi.org/10.35196/rfm.2013.3-S3-A.285

Saucedo, A. L., M. M. Perales-Quintana, D. Paniagua-Vega, C. Sanchez-Martinez, P. Cordero-Perez y N. W. Minsky. 2018. Chronic kidney disease and the search for new biomarkers for early diagnosis. Current Medicinal Chemistry 25(31): 3719-3747. DOI: https://doi.org/10.2174/0929867325666180307110908 DOI: https://doi.org/10.2174/0929867325666180307110908

Scopus. 2024. Scopus database. Elsevier. https://www.scopus.com (consultado julio de 2024).

Sharma, M., M. Cortes-Cruz, K. R. Ahern, M. McMullen, T. P. Brutnell y S. Chopra. 2011. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188(1): 69-79. DOI: https://doi.org/10.1534/genetics.110.126136 DOI: https://doi.org/10.1534/genetics.110.126136

Shi, L., X. Li, Y. Fu y C. Li. 2023. Environmental stimuli and phytohormones in anthocyanin biosynthesis: a comprehensive review. International Journal of Molecular Sciences 24(22): 16415. DOI: https://doi.org/10.3390/ijms242216415 DOI: https://doi.org/10.3390/ijms242216415

Simla, S., S. Boontang y B. Harakotr. 2016. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Australian Journal of Crop Science 10(5): 675-682. DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7389 DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7389

Srinivas, K., J. W. King, L. R. Howard y J. K. Monrad. 2011. Binary diffusion coefficients of phenolic compounds in subcritical water using a chromatographic peak broadening technique. Fluid Phase Equilibria 301(2): 234-243. DOI: https://doi.org/10.1016/j.fluid.2010.12.003 DOI: https://doi.org/10.1016/j.fluid.2010.12.003

Strygina, K. V., A. V. Kochetov y E. K. Khlestkina. 2019. Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics 20(S1): 35. DOI: https://doi.org/10.1186/s12863-019-0728-x DOI: https://doi.org/10.1186/s12863-019-0728-x

Styles, E. D. y E. H. Coe. 1986. Unstable expression of an R allele with a3 in maize: a recessive intensifier of plant color. The Journal of Heredity 77(6): 389-393. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a110267 DOI: https://doi.org/10.1093/oxfordjournals.jhered.a110267

Subrin, S., M. F. Islam, M. A. Satter, J. Rahman, M. S. Zannat, M. F. Chowdhury y A. Hossain. 2022. Physico-functional and nutritional properties of pigmented and non-pigmented maize available in Bangladesh. Bangladesh Journal of Botany 51(3): 589-596. DOI: https://doi.org/10.3329/bjb.v51i3.62006 DOI: https://doi.org/10.3329/bjb.v51i3.62006

Sun, Y. A. N. y L. Li. 2018. Cyanidin-3-glucoside inhibits inflammatory activities in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. Clinical and Experimental Pharmacology and Physiology 45(10): 1038-1045. DOI: https://doi.org/10.1111/1440-1681.12970 DOI: https://doi.org/10.1111/1440-1681.12970

Suriano, S., C. Balconi, P. Valoti y R. Redaelli. 2021. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT-Food Science and Technology 144: 111257. DOI: https://doi.org/10.1016/j.lwt.2021.111257 DOI: https://doi.org/10.1016/j.lwt.2021.111257

Tan, J., Y. Li, D. X. Hou y S. Wu. 2019. The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants 8(10): 479. DOI: https://doi.org/10.3390/antiox8100479 DOI: https://doi.org/10.3390/antiox8100479

Tian, X.-Z., J.-X. Li, Q.-Y. Luo, D. Zhou, Q.-M. Long, X. Wang, Q. Lu y G.-L. Wen. 2021. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats. Frontiers in Veterinary Science 8: 715710. DOI: https://doi.org/10.3389/fvets.2021.715710 DOI: https://doi.org/10.3389/fvets.2021.715710

Tian, X. Z., P. Paengkoum, S. Paengkoum, S. Chumpawadee, C. Ban y S. Thongpea. 2019. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science 102(1): 413-418. DOI: https://doi.org/10.3168/jds.2018-15423 DOI: https://doi.org/10.3168/jds.2018-15423

Tian, X.-Z., P. Paengkoum, S. Paengkoum, S. Thongpea y C. Ban. 2018. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. Journal of Integrative Agriculture 17(9): 2082-2095. DOI: https://doi.org/10.1016/S2095-3119(18)61970-7 DOI: https://doi.org/10.1016/S2095-3119(18)61970-7

Trehan, S., N. Singh y A. Kaur. 2018. Characteristics of white, yellow, and purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. Journal of Food Science and Technology 55(6): 2334-2343. DOI: https://doi.org/10.1007/s13197-018-3171-5 DOI: https://doi.org/10.1007/s13197-018-3171-5

Tsuda, T., F. Horio, K. Uchida, H. Aoki y T. Osawa. 2003. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition 133(7): 2125-2130. DOI: https://doi.org/10.1093/jn/133.7.2125 DOI: https://doi.org/10.1093/jn/133.7.2125

Valle Campos, M., J. García Ceccarelli, D. Laos Anchante, C. E. Yarasca, E. Loyola Gonzales y F. Surco-Laos. 2019. Análisis proximal y cuantificación de antocianinas totales en Zea mays variedad morada sometido a diferentes procesos de secado. Revista de la Sociedad Química del Perú 85(1): 109-115. DOI: https://doi.org/10.37761/rsqp.v85i1.241 DOI: https://doi.org/10.37761/rsqp.v85i1.241

Vankar, P. S. y J. Srivastava. 2010. Evaluation of anthocyanin content in red and blue flowers. International Journal of Food Engineering 6(4). DOI: https://doi.org/10.2202/1556-3758.1907 DOI: https://doi.org/10.2202/1556-3758.1907

Vargas-Yana, D., B. Aguilar-Morón, N. Pezo-Torres, K. Shetty y L. G. Ranilla. 2020. Ancestral Peruvian ethnic fermented beverage “chicha” based on purple corn (Zea mays L.): unraveling the health-relevant functional benefits. Journal of Ethnic Foods 7: 1-12. DOI: https://doi.org/10.1186/s42779-020-00063-3 DOI: https://doi.org/10.1186/s42779-020-00063-3

Venkatesh, J., S. Y. Lee, S. Back, T. G. Kim, G. W. Kim, J. M. Kim, J. -K. Kwon y B. C. Kang. 2023. Update on the genetic and molecular regulation of the biosynthetic pathways underlying pepper fruit color and pungency. Current Plant Biology 35-36: 100303. DOI: https://doi.org/10.1016/j.cpb.2023.100303 DOI: https://doi.org/10.1016/j.cpb.2023.100303

VOSviewer. 2025. VOSviewer Visualizing scientific landscapes. Leiden University. Leiden, Países Bajos. https://www.vosviewer.com/ (consultado julio de 2024).

Wang, Q., J. Zhu, B. Li, S. Li, Y. Yang, Q. Wang, W. Xu y L. Wang. 2023. Functional identification of anthocyanin glucosyltransferase genes: a Ps3GT catalyzes pelargonidin to pelargonidin 3-O-glucoside painting the vivid red flower color of Paeonia. Planta 257(4): 65. DOI: https://doi.org/10.1007/s00425-023-04095-2 DOI: https://doi.org/10.1007/s00425-023-04095-2

Wu, Q., Y. Zhang, H. Tang, Y. Chen, B. Xie, C. Wang y Z. Sun. 2017. Separation and identification of anthocyanins extracted from blueberry wine lees and pigment binding properties toward β-glucosidase. Journal of Agricultural and Food Chemistry 65(1): 216-223. DOI: https://doi.org/10.1021/acs.jafc.6b04244 DOI: https://doi.org/10.1021/acs.jafc.6b04244

Xu, H., M. Liu, H. Liu, B. Zhao, M. Zheng y J. Liu. 2021. Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK. Journal of Functional Foods 84: 104582. DOI: https://doi.org/10.1016/j.jff.2021.104582 DOI: https://doi.org/10.1016/j.jff.2021.104582

Xu, Y., D. Hu, Y. Li, C. Sun y W. Chen. 2018. An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. Journal of Chromatography B 1072: 211-220. DOI: https://doi.org/10.1016/j.jchromb.2017.11.025 DOI: https://doi.org/10.1016/j.jchromb.2017.11.025

Yamaguchi, M. A., S. Kawanobu, T. Maki y I. Ino. 1996. Cyanidin 3-malonylglucoside and malonyl-coenzyme a: anthocyanidin malonyltransferase in Lactuca sativa leaves. Phytochemistry 42(3): 661-663. DOI: https://doi.org/10.1016/0031-9422(96)00025-8 DOI: https://doi.org/10.1016/0031-9422(96)00025-8

Yang, L., C. Rong-Rong, F. Ji-Li y Y. Ke. 2019. Total anthocyanins and cyanidin-3-O-glucoside contents and antioxidant activities of purified extracts from eight different pigmented plants. Pharmacognosy Magazine 15(60): 124-129. DOI: https://doi.org/10.4103/pm.pm_162_18 DOI: https://doi.org/10.4103/pm.pm_162_18

Yang, Z. y W. Zhai. 2010. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science & Emerging Technologies 11(1): 169-176. DOI: https://doi.org/10.1016/j.ifset.2009.08.012 DOI: https://doi.org/10.1016/j.ifset.2009.08.012

Yoshida, K. 2024. Chemical and biological study of flavonoid-related plant pigment: current findings and beyond. Bioscience, Biotechnology & Biochemistry 88(7): 705-718. DOI: https://doi.org/10.1093/bbb/zbae048 DOI: https://doi.org/10.1093/bbb/zbae048

Zaffino, C., B. Russo y S. Bruni. 2015. Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 149: 41-47. DOI: https://doi.org/10.1016/j.saa.2015.04.039 DOI: https://doi.org/10.1016/j.saa.2015.04.039

Zhang, C., X. Li, Z. Wang, Z. Zhang y Z. Wu. 2020. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics 112(6): 5157-5169. DOI: https://doi.org/10.1016/j.ygeno.2020.09.030 DOI: https://doi.org/10.1016/j.ygeno.2020.09.030

Zhang, P., S. Liu, Z. Zhao, L. You, M. D. Harrison y Z. Zhang. 2021. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry 343: 128482. DOI: https://doi.org/10.1016/j.foodchem.2020.128482 DOI: https://doi.org/10.1016/j.foodchem.2020.128482

Zhao, Q., C. Q. Duan y J. Wang. 2010. Anthocyanins Profile of Grape Berries of Vitis amurensis, Its Hybrids and Their Wines. International Journal of Molecular Sciences 11(5): 2212-2228. DOI: https://doi.org/10.3390/ijms11052212 DOI: https://doi.org/10.3390/ijms11052212

Descargas

Publicado

2025-06-16

Cómo citar

Tepixtle-Colohua, V. V., Reyes-Trejo, B., & Saucedo , A. L. (2025). Compuestos químicos funcionales en el maíz morado (Zea mays): una revisión bibliográfica. Acta Botanica Mexicana, (132). https://doi.org/10.21829/abm132.2025.2439
Metrics
Vistas/Descargas
  • Resumen
    513
  • PDF
    107
  • EPUB
    9

Número

Sección

Revisión

Métrica