Compuestos químicos funcionales en el maíz morado (Zea mays): una revisión bibliográfica
DOI:
https://doi.org/10.21829/abm132.2025.2439Palabras clave:
alimentos funcionales, antioxidantes, antocianinas, pigmentosResumen
Antecedentes y Objetivos: El maíz morado (Zea mays) es una variedad nativa de América, rica en compuestos fenólicos, principalmente antocianinas, y otros compuestos fitoquímicos funcionales. En los últimos años ha tenido un incremento en su consumo y distribución, ya que además de que es símbolo gastronómico de varias localidades de México por sus propiedades bioquímicas y potencial nutricional, ha despertado la curiosidad de varios grupos de investigación en distintas partes del mundo. Con la finalidad de destacar las características de los compuestos químicos funcionales, principalmente antocianinas y antioxidantes del maíz morado, se realizó este trabajo de revisión bibliográfica.
Métodos: Se efectuó un análisis bibliométrico utilizando la base de datos Scopus para identificar publicaciones relevantes relacionadas con los términos “Purple corn” y “Anthocyanins”. Los metadatos fueron procesados con VOSviewer para construir redes de co-ocurrencia de palabras clave y analizar tendencias de investigación.
Resultados clave: El análisis bibliométrico reveló 308 documentos clave, publicados entre 1979 y 2024, y permitió delinear cuatro temas principales: antocianinas, compuestos antioxidantes, valor nutricional y beneficios para la salud. El maíz morado destacó por su elevado contenido de antocianinas (ca. 1430 mg/100 g), especialmente derivados glucosilados de cianidina, pelargonidina y peonidina, cuya biosíntesis se relaciona con factores ambientales. Los principales compuestos antioxidantes fueron ácido ferúlico y derivados de quercetina, con notable capacidad antioxidante (ca. 271.33 mg GAE/g). Respecto a su composición nutricional, el maíz morado sobresale en carbohidratos, proteínas y fibra. Además, diversos estudios vinculan su consumo con efectos antiobesidad, antiinflamatorios, antidiabéticos, cardioprotectores, anticancerígenos, entre otros beneficios.
Conclusiones: El maíz morado es un alimento funcional con importantes beneficios para la salud, respaldado por estudios científicos que enfatizan sus propiedades antioxidantes y calidad nutricional. La investigación realizada ha permitido reconocer su potencial en la industria alimentaria y farmacéutica, y resaltar la importancia de continuar investigando sus propiedades bioactivas y aplicaciones nutraceúticas.
Descargas
Citas
Agama-Acevedo, E., Y. Salinas-Moreno, G. Pacheco-Vargas y L. A. Bello-Pérez. 2011. Características físicas y químicas de dos razas de maíz azul: morfología del almidón. Revista Mexicana de Ciencias Agrícolas 2(3): 317-329.
Aguilar-Hernández, Á. D., Y. Salinas-Moreno, J. L. Ramírez-Díaz, I. Alemán-De la Torre, E. Bautista-Ramírez y H. E. Flores-López. 2019. Antocianinas y color en grano y olote de maíz morado peruano cultivado en Jalisco, México. Revista Mexicana de Ciencias Agrícolas 10(5): 1071-1082. DOI: https://doi.org/10.29312/remexca.v10i5.1828 DOI: https://doi.org/10.29312/remexca.v10i5.1828
Aoki, H., N. Kuze y Y. Kato. 2002. Anthocyanins isolated from purple corn (Zea mays L.). Foods and Food Ingredients Journal of Japan 199: 41-45.
Asokapandian, S., S. Periasamy y G. J. Swamy. 2018. Ozone for fruit juice preservation. In: Rajauria, G. y B. K. Tiwari (eds.). Fruit juices: extraction, composition, quality and analysis. Academic Press. Cambridge, USA. Pp. 511-527. DOI: https://doi.org/10.1016/B978-0-12-802230-6.00025-4 DOI: https://doi.org/10.1016/B978-0-12-802230-6.00025-4
Barba, F. J., H. N. Rajha, E. Debs, A. M. Abi-Khattar, S. Khabbaz, B. N. Dar, M. J. Simirgiotis, J. M. Castagnini, R. G. Maroun y N. Louka. 2022. Optimization of polyphenols’ recovery from purple corn cobs assisted by infrared technology and use of extracted anthocyanins as a natural colorant in pickled turnip. Molecules 27(16): 5222. DOI: https://doi.org/10.3390/molecules27165222 DOI: https://doi.org/10.3390/molecules27165222
Bayomy, H. M. 2017. Sensory, nutritional and popping qualities of yellow and purple popcorn. Journal of Food and Dairy Sciences, Mansoura University 8(8): 361-367. DOI: https://doi.org/10.21608/jfds.2017.38903 DOI: https://doi.org/10.21608/jfds.2017.38903
Bueno, J. M., P. Sáez-Plaza, F. Ramos-Escudero, A. M. Jiménez, R. Fett y A. G. Asuero. 2012. Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry 42(2): 126-151. DOI: https://doi.org/10.1080/10408347.2011.632314 DOI: https://doi.org/10.1080/10408347.2011.632314
Bureau, S., C. M. G. C. Renard, M. Reich, C. Ginies y J. M. Audergon. 2009. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Science and Technology 42(1): 372-377. DOI: https://doi.org/10.1016/j.lwt.2008.03.010 DOI: https://doi.org/10.1016/j.lwt.2008.03.010
Cai, T., S. Ge-Zhang y M. Song. 2023. Anthocyanins in metabolites of purple corn. Frontiers in Plant Science 14: 1154535. DOI: https://doi.org/10.3389/fpls.2023.1154535 DOI: https://doi.org/10.3389/fpls.2023.1154535
Carrera, E. J., M. J. Cejudo-Bastante, N. Hurtado, F. J. Heredia y M. L. González-Miret. 2023. Revalorization of Colombian purple corn Zea mays L. by-products using two-step column chromatography. Food Research International 169: 112931. DOI: https://doi.org/10.1016/j.foodres.2023.112931 DOI: https://doi.org/10.1016/j.foodres.2023.112931
Cevallos-Casals, B. A. y L. Cisneros-Zevallos. 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agricultural and Food Chemistry 51(11): 3313-3319. DOI: https://doi.org/10.1021/jf034109c DOI: https://doi.org/10.1021/jf034109c
Chamizo-González, F., I. García Estévez, B. Gordillo, E. Manjón, M. T. Escribano-Bailón, F. J. Heredia y M. L. González-Miret. 2023. First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chemistry 413: 135591. DOI: https://doi.org/10.1016/j.foodchem.2023.135591 DOI: https://doi.org/10.1016/j.foodchem.2023.135591
Chatham, L. A., L. West, M. A. Berhow, K. E. Vermillion y J. A. Juvik. 2018. Unique flavanol-anthocyanin condensed forms in Apache Red purple corn. Journal of Agricultural and Food Chemistry 66(41): 10844-10854. DOI: https://doi.org/10.1021/acs.jafc.8b04723 DOI: https://doi.org/10.1021/acs.jafc.8b04723
Chayati, I., S. Sunarti, Y. Marsono y M. Astuti. 2019. Anthocyanin extract of purple corn improves hyperglycemia and insulin resistance of rats fed high fat and fructose diet via GLP1 and GLP1R mechanism. Journal of Food and Nutrition Research 7(4): 303-310. DOI: https://doi.org/10.12691/jfnr-7-4-7 DOI: https://doi.org/10.12691/jfnr-7-4-7
Chen, P. N., S. C. Chu, H. L. Chiou, C. L. Chiang, S. F. Yang y Y. S. Hsieh. 2005. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutrition and Cancer 53(2): 232-243. DOI: https://doi.org/10.1207/s15327914nc5302_12 DOI: https://doi.org/10.1207/s15327914nc5302_12
Christie, P. J., M. R. Alfenito y V. Walbot. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194: 541-549. DOI: https://doi.org/10.1007/BF00714468 DOI: https://doi.org/10.1007/BF00714468
Chuntakaruk, H., P. Kongtawelert y P. Pothacharoen. 2021. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Scientific Reports 11(1): 1895. DOI: https://doi.org/10.1038/s41598-021-81384-4 DOI: https://doi.org/10.1038/s41598-021-81384-4
Cristianini, M. y J. S. Guillén Sánchez. 2020. Extraction of bioactive compounds from purple corn using emerging technologies: a review. Journal of Food Science 85(4): 862-869. DOI: https://doi.org/10.1111/1750-3841.15074 DOI: https://doi.org/10.1111/1750-3841.15074
Cuevas Montilla, E., S. Hillebrand, A. Antezana y P. Winterhalter. 2011. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry 59(13): 7068-7074. DOI: https://doi.org/10.1021/jf201061x DOI: https://doi.org/10.1021/jf201061x
Cui, H. X., Y. Luo, Y. Y. Mao, K. Yuan, S. H. Jin, X. T. Zhu y B. W. Zhong. 2021. Purified anthocyanins from Zea mays L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. Journal of the Science of Food and Agriculture 101(11): 4672-4680. DOI: https://doi.org/10.1002/jsfa.11112 DOI: https://doi.org/10.1002/jsfa.11112
Del Pozo-Insfran, D., C. H. Brenes, S. O. Serna Saldivar y S. T. Talcott. 2006. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Research International 39(6): 696-703. DOI: https://doi.org/10.1016/j.foodres.2006.01.014 DOI: https://doi.org/10.1016/j.foodres.2006.01.014
Devi, A., A. A. Konerira Aiyappaa y A. L. Waterhouse. 2020. Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution. Journal of the Science of Food and Agriculture 100(5): 2110-2120. DOI: https://doi.org/10.1002/jsfa.10234 DOI: https://doi.org/10.1002/jsfa.10234
Díaz-García, A., B. Salvá-Ruíz, N. Bautista-Cruz y L. Condezo-Hoyos. 2021. Optimization of a natural low-calorie antioxidant tea prepared from purple corn (Zea mays L.) cobs and stevia (Stevia rebaudiana Bert.). LWT-Food Science and Technology 150: 111952. DOI: https://doi.org/10.1016/j.lwt.2021.111952 DOI: https://doi.org/10.1016/j.lwt.2021.111952
Dixon, R. A., L. Achnine, P. Kota, L. Chang-Jun, M. S. Sirinivasa Reddy y L. Wang. 2002. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology 3(5): 371-390. DOI: https://doi.org/10.1046/j.1364-3703.2002.00131.x DOI: https://doi.org/10.1046/j.1364-3703.2002.00131.x
Estévez, L. y R. A. Mosquera. 2007. A density functional theory study on pelargonidin. The Journal of Physical Chemistry A 111(43): 11100-11109. DOI: https://doi.org/10.1021/jp074941a DOI: https://doi.org/10.1021/jp074941a
Fan, X., B. Fan, Y. Wang y W. Yang. 2016. Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm. Plant Biotechnology Reports 10: 1-11. DOI: https://doi.org/10.1007/s11816-015-0382-3 DOI: https://doi.org/10.1007/s11816-015-0382-3
Feregrino-Pérez, A. A., A. Mercado-Luna, C. A. Murillo-Cárdenas, R. González-Santos, J. L. Chávez-Servín, A. F. Vargas-Madriz y E. Luna-Sánchez. 2024. Polyphenolic compounds and antioxidant capacity in native maize of the Sierra Gorda of Querétaro. Agronomy 14(1): 142. DOI: https://doi.org/10.3390/agronomy14010142 DOI: https://doi.org/10.3390/agronomy14010142
Finkel, M. L., S. Sanchez, T. Mak, J. Granstein y A. Lefkowitz. 2013. Anthocyanin-rich purple corn extract and its effects on the blood pressure of adults. Journal of Evidence-Based Complementary & Alternative Medicine 18(4): 237-242. DOI: https://doi.org/10.1177/2156587213482942 DOI: https://doi.org/10.1177/2156587213482942
Galvano, F., L. La Fauci, G. Lazzarino, V. Fogliano, A. Ritieni, S. Ciappellano, N. C. Battistini, B. Tavazzi y G. Galvano. 2004. Cyanidins: metabolism and biological properties. The Journal of Nutritional Biochemistry 15(1): 2-11. DOI: https://doi.org/10.1016/j.jnutbio.2003.07.004 DOI: https://doi.org/10.1016/j.jnutbio.2003.07.004
Galvano, F., L. La Fauci, P. Vitaglione, V. Fogliano, L. Vanella y C. Felgines. 2007. Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Annali dell'Istituto Superiore di Sanità 43(4): 382-393.
Ghattamaneni, N. K. R., A. Sharma, S. K. Panchal y L. Brown. 2020. Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. European Journal of Nutrition 59(7): 2905-2918. DOI: https://doi.org/10.1007/s00394-019-02130-1 DOI: https://doi.org/10.1007/s00394-019-02130-1
Goodman, C. D., P. Casati y V. Walbot. 2004. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. The Plant Cell 16(7): 1812-1826. DOI: https://doi.org/10.1105/tpc.022574 DOI: https://doi.org/10.1105/tpc.022574
Gorriti Gutierrez, A., J. Arroyo Acevedo, L. Negron Ballarte, B. Jurado Teixeira, H. Purizaca Llajaruna, I. Santiago Aquise, E. Taype Espinoza y F. Quispe Jacobo. 2009. Antocianinas, fenoles totals y actividad antioxidante de las corontas del maíz morado (Zea mays L.): Método de extracción. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 8(6): 509-518.
Guillén Sánchez, J. S., C. B. Betim Cazarin, M. R. Canesin, F. Reyes Reyes, A. H. Iglesias y M. Cristianini. 2023. Extraction of bioactive compounds from Peruvian purple corn cob (Zea mays L.) by dynamic high pressure. Scientia Agropecuaria 14(3): 367-373. DOI: https://doi.org/10.17268/sci.agropecu.2023.032 DOI: https://doi.org/10.17268/sci.agropecu.2023.032
Guillén-Sánchez, J., S. Mori-Arismendi y L. M. Paucar-Menacho. 2014. Características y propiedades funcionales del maíz morado (Zea mays L.) var. subnigroviolaceo. Scientia Agropecuaria 5(4): 211-217. DOI: https://doi.org/10.17268/sci.agropecu.2014.04.05 DOI: https://doi.org/10.17268/sci.agropecu.2014.04.05
Guo, G., Y. Wang, B. Zhang, H. Yu, L. Li, G. Cao, B. chen, C. Li, F. Bu, S. Teng, Q. Yu, M. Gao, B. Jiang y K. Yang. 2024. Comparative transcriptomic and metabolomic analysis reveals mechanisms of selenium-regulated anthocyanin synthesis in waxy maize (Zea mays L.). Frontiers in Plant Science 15: 1466756. DOI: https://doi.org/10.3389/fpls.2024.1466756 DOI: https://doi.org/10.3389/fpls.2024.1466756
Hao, R., S. Shan, D. Yang, H. Zhang, Y. Sun y Z. Li. 2023. Peonidin-3-O-glucoside from purple corncob ameliorates nonalcoholic fatty liver disease by regulating mitochondrial and lysosome functions to reduce oxidative stress and inflammation. Nutrients 15(2): 372. DOI: https://doi.org/10.3390/nu15020372 DOI: https://doi.org/10.3390/nu15020372
Harakotr, B., B. Suriharn, R. Tangwongchai, M. P. Scott y K. Lertrat. 2014. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chemistry 164: 510-517. DOI: https://doi.org/10.1016/j.foodchem.2014.05.069 DOI: https://doi.org/10.1016/j.foodchem.2014.05.069
He, F., L. Mu, G. L. Yan, N. N. Liang, Q. H. Pan, J. Wang, M. J. Reeves y C. Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15(12): 9057-9091. DOI: https://doi.org/10.3390/molecules15129057 DOI: https://doi.org/10.3390/molecules15129057
Holton, T. A. y E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7(7): 1071-1083. DOI: https://doi.org/10.1105/tpc.7.7.1071 DOI: https://doi.org/10.2307/3870058
Hong, H. T., M. E. Netzel y T. J. O’Hare. 2020. Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chemistry 319: 126515. DOI: https://doi.org/10.1016/j.foodchem.2020.126515 DOI: https://doi.org/10.1016/j.foodchem.2020.126515
Huang, B., Z. Wang, J. H. Park, O. H. Ryu, M. K. Choi, J. Y. Lee, Y. H. Kang y S. S. Lim. 2015. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutrition Research and Practice 9(1): 22-29. DOI: https://doi.org/10.4162/nrp.2015.9.1.22 DOI: https://doi.org/10.4162/nrp.2015.9.1.22
Jing, P., V. Noriega, S. J. Schwartz y M. M. Giusti. 2007. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. Journal of Agricultural and Food Chemistry 55(21): 8625-8629. DOI: https://doi.org/10.1021/jf070755q DOI: https://doi.org/10.1021/jf070755q
Kallithraka, S., L. Aliaj, D. P. Makris y P. Kefalas. 2009. Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. International Journal of Food Science & Technology 44(12): 2385-2393. DOI: https://doi.org/10.1111/j.1365-2621.2008.01869.x DOI: https://doi.org/10.1111/j.1365-2621.2008.01869.x
Khoo, H. E., A. Azlan, S. T. Tang y S. M. Lim. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61: 1361779. DOI: https://doi.org/10.1080/16546628.2017.1361779 DOI: https://doi.org/10.1080/16546628.2017.1361779
Kim, H. Y., K. Y. Lee, M. Kim, M. Hong, P. Deepa y S. Kim. 2023. A review of the biological properties of purple corn (Zea mays L.). Scientia Pharmaceutica 91(1): 6. DOI: https://doi.org/10.3390/scipharm91010006 DOI: https://doi.org/10.3390/scipharm91010006
Kooshki, L., S. Fakhri, F. Abbaszadeh, A. Kiani, M. H. Farzaei, E. Mohammadi-Noori y J. Echeverria. 2025. Pelargonidin improves functional recovery and attenuates neuropathic pain following spinal cord injury in rats: relevance to its neuroprotective, antioxidant, and anti-inflammatory effects. Frontiers in Pharmacology 16: 1547187. DOI: https://doi.org/10.3389/fphar.2025.1547187 DOI: https://doi.org/10.3389/fphar.2025.1547187
Kurambhatti, C., D. Kumar, K. D. Rausch, M. E. Tumbleson y V. Singh. 2020. Improving technical and economic feasibility of water-based anthocyanin recovery from purple corn using staged extraction approach. Industrial Crops and Products 158: 112976. DOI: https://doi.org/10.1016/j.indcrop.2020.112976 DOI: https://doi.org/10.1016/j.indcrop.2020.112976
Kurt-Celebi, A., N. Colak, S. Hayirlioglu-Ayaz, S. K. Veličkovska, F. Ilieva, T. Esatbeyoglu y F. A. Ayaz. 2020. Accumulation of phenolic compounds and antioxidant capacity during berry development in black ‘Isabel’ grape (Vitis vinifera L. x Vitis labrusca L.). Molecules 25(17): 3845. DOI: https://doi.org/10.3390/molecules25173845 DOI: https://doi.org/10.3390/molecules25173845
Lao, F., G. T. Sigurdson y M. M. Giusti. 2017. Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety 16(2): 234-246. DOI: https://doi.org/10.1111/1541-4337.12249 DOI: https://doi.org/10.1111/1541-4337.12249
Lao, F. y M. M. Giusti. 2018. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. Journal of Cereal Science 80: 87-93. DOI: https://doi.org/10.1016/j.jcs.2018.01.001 DOI: https://doi.org/10.1016/j.jcs.2018.01.001
Lee, J. H. y M. G. Choung. 2011. Identification and characterisation of anthocyanins in the antioxidant activity-containing fraction of Liriope platyphylla fruits. Food Chemistry 127(4): 1686-1693. DOI: https://doi.org/10.1016/j.foodchem.2011.02.037 DOI: https://doi.org/10.1016/j.foodchem.2011.02.037
Lefevre, M., N. Hergert y A. Zuberi. 2011. Reduced weight gain and adiposity with addition of anthocyanin-rich purple corn extract to a high fat diet is associated with changes in intestinal microbiota in C57BL/6 mice. The FASEB Journal 25 (S1): 224.7. DOI: https://doi.org/10.1096/fasebj.25.1_supplement.224.7 DOI: https://doi.org/10.1096/fasebj.25.1_supplement.224.7
Leiva González, S., G. Gayoso Bazán y L. Chang Chávez. 2016. Zea mays L. “maíz morado” (Poaceae), un cereal utilizado como alimento en el Perú prehispánico. Arnaldoa 23(1): 295-316. DOI: https://doi.org/10.22497/arnaldoa.232.23212
Li, Q., P. Somavat, V. Singh, L. Chatham y E. Gonzalez de Mejia. 2017. A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. Food Chemistry 231: 332-339. DOI: https://doi.org/10.1016/j.foodchem.2017.03.146 DOI: https://doi.org/10.1016/j.foodchem.2017.03.146
Li, T., Y. Wang, Q. Dong, F. Wang, F. Kong, G. Liu, Y. Lei, H. Yang, Y. Zhou y C. Li. 2022. Weighted gene co-expression network analysis reveals key module and hub genes associated with the anthocyanin biosynthesis in maize pericarp. Frontiers in Plant Science 13: 1013412. DOI: https://doi.org/10.3389/fpls.2022.1013412 DOI: https://doi.org/10.3389/fpls.2022.1013412
Li, W., M. Gu, P. Gong, J. Wang, Y. Hu, Y. Hu, X. Tan, J. Wei y H. Yang. 2021. Glycosides changed the stability and antioxidant activity of pelargonidin. LWT- Food Science and Technology 147: 111581. https://doi.org/10.1016/j.lwt.2021.111581 DOI: https://doi.org/10.1016/j.lwt.2021.111581
Liang, Y., M. U. Farooq, Y. Hu, Z. Tang, Y. Zhang, R. Zeng, T. Zheng, H. H. Ei, X. Ye, X. Jia y J. Zhu. 2018. Study on stability and antioxidant activity of red anthocyanidin glucoside rich hybrid rice, its nutritional and physicochemical characteristics. Food Science and Technology Research 24(4): 687-696. DOI: https://doi.org/10.3136/FSTR.24.687 DOI: https://doi.org/10.3136/fstr.24.687
Lopez-Martinez, L. X., R. M. Oliart-Ros, G. Valerio-Alfaro, C. H. Lee, K. L. Parkin y H. S. Garcia. 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Science and Technology 42(6): 1187-1192. DOI: https://doi.org/10.1016/j.lwt.2008.10.010 DOI: https://doi.org/10.1016/j.lwt.2008.10.010
Luna-Vital, D. A. y E. Gonzalez de Mejia. 2018. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 13(7): e0200449. DOI: https://doi.org/10.1371/journal.pone.0200449 DOI: https://doi.org/10.1371/journal.pone.0200449
Luna-Vital, D., I. Luzardo-Ocampo, M. L. Cuellar-Nuñez, G. Loarca-Piña y E. G. de Mejia. 2020. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. The Journal of Nutritional Biochemistry 79: 108343. DOI: https://doi.org/10.1016/j.jnutbio.2020.108343 DOI: https://doi.org/10.1016/j.jnutbio.2020.108343
Luna-Vital, D., M. Weiss y E. Gonzalez de Mejia. 2017. Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Molecular Nutrition & Food Research 61(12): 1700362. DOI: https://doi.org/10.1002/mnfr.201700362 DOI: https://doi.org/10.1002/mnfr.201700362
Magaña Cerino, J. M., H. A. Peniche Pavía, A. Tiessen y C. M. Gurrola Díaz. 2020. Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress - a review. Polish Journal of Food and Nutrition Sciences 70(2): 85-99. DOI: https://doi.org/10.31883/pjfns/113272 DOI: https://doi.org/10.31883/pjfns/113272
Martens, S., N. Mateus y V. De Freitas. 2014. Special issue on anthocyanins. Planta 240: 899. DOI: https://doi.org/10.1007/s00425-014-2185-0 DOI: https://doi.org/10.1007/s00425-014-2185-0
Mattioli, R., A. Francioso, L. Mosca y P. Silva. 2020. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25(17): 3809. DOI: https://doi.org/10.3390/molecules25173809 DOI: https://doi.org/10.3390/molecules25173809
Mazewski, C., K. Liang y E. Gonzalez de Mejia. 2017. Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. Journal of Functional Foods 34: 254-265. DOI: https://doi.org/10.1016/j.jff.2017.04.038 DOI: https://doi.org/10.1016/j.jff.2017.04.038
Medina-Hoyos, A., L. Narro-León y A. Chávez-Cabrera. 2020. Cultivo de maíz morado (Zea mays L.) en zona altoandina de Perú: adaptación e identificación de cultivares de alto rendimiento y contenido de antocianina. Scientia Agropecuaria 11(3): 291-299. DOI: https://doi.org/10.17268/sci.agropecu.2020.03.01 DOI: https://doi.org/10.17268/sci.agropecu.2020.03.01
Mendoza-Mendoza, C. G., R. M. Soto-Hernández, M. C. Mendoza-Castillo, A. Delgado-Alvarado y F. J. Sánchez-Ramírez. 2023. Foods and beverages made from Mexican purple corn: a means to increase anthocyanins’ intake. Functional Foods in Health and Disease 13(11): 632-647. DOI: https://doi.org/10.31989/ffhd.v13i11.1194 DOI: https://doi.org/10.31989/ffhd.v13i11.1194
Meng, L. S., B. Li, D. N. Li, Y. H. Wang, Y. Lin, X. J. Meng, X. Y. Sun y N. Liu. 2017. Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. Journal of Functional Foods 38A: 474-485. DOI: https://doi.org/10.1016/j.jff.2017.09.025 DOI: https://doi.org/10.1016/j.jff.2017.09.025
Merecz-Sadowska, A., P. Sitarek, T. Kowalczyk, K. Zajdel, M. Jęcek, P. Nowak y R. Zajdel. 2023. Food anthocyanins: malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients 15(13): 3016. DOI: https://doi.org/10.3390/nu15133016 DOI: https://doi.org/10.3390/nu15133016
Mex-Álvarez, R. M. J., P. M. Garma-Quen, N. J. Bolívar-Fernández y M. M. Guillén-Morales. 2016. Análisis proximal y fitoquímico de cinco variedades de maíz del estado de Campeche (México). Revista Latinoamericana de Recursos Naturales 12(2): 74-80.
Monroy, Y. M., R. A. F. Rodrigues, A. Sartoratto y F. A. Cabral. 2016. Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO₂, ethanol, and water as solvents. The Journal of Supercritical Fluids 107: 250-259. DOI: https://doi.org/10.1016/j.supflu.2015.09.020 DOI: https://doi.org/10.1016/j.supflu.2015.09.020
Mrad, R., E. Debs, R. Saliba, R. G. Maroun y N. Louka. 2014. Multiple optimization of chemical and textural properties of roasted expanded purple maize using response surface methodology. Journal of Cereal Science 60(2): 397-405. DOI: https://doi.org/10.1016/j.jcs.2014.05.005 DOI: https://doi.org/10.1016/j.jcs.2014.05.005
Olivas-Aguirre, F. J., J. Rodrigo-García, N. D. R. Martínez-Ruiz, A. I. Cárdenas-Robles, S. O. Mendoza-Díaz, E. Álvarez-Parrilla, G. A. González-Aguilar, L. A. De la Rosa, A. Ramos-Jiménez y A. Wall-Medrano. 2016. Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 21(9): 1264. DOI: https://doi.org/10.3390/molecules21091264 DOI: https://doi.org/10.3390/molecules21091264
Ortega, G. M. y M. Guerra. 2006. Separación, caracterización estructural y cuantificación de antocianinas mediante métodos químico-físicos. Parte II. ICIDCA. Sobre los Derivados de la Caña de Azúcar XL(3): 3-11.
Park, N. II., H. Xu, X. Li, I. H. Jang, S. Park, G. H. Ahn, Y. P. Lim, S. J. Kim y S. U. Park. 2011. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). Journal of Agricultural and Food Chemistry 59(11): 6034-6039. DOI: https://doi.org/10.1021/jf200824c DOI: https://doi.org/10.1021/jf200824c
Paucar-Menacho, L. M., C. Martínez-Villaluenga, M. Dueñas, J. Frias y E. Peñas. 2017. Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT-Food Science and Technology 76B: 236-244. DOI: https://doi.org/10.1016/j.lwt.2016.07.064 DOI: https://doi.org/10.1016/j.lwt.2016.07.064
Paun, N., O. R. Botoran y V. C. Niculescu. 2022. Total phenolic, anthocyanins HPLC-DAD-MS determination and antioxidant capacity in black grape skins and blackberries: a comparative study. Applied Sciences 12(2): 936. DOI: https://doi.org/10.3390/app12020936 DOI: https://doi.org/10.3390/app12020936
Pedreschi, R. y L. Cisneros-Zevallos. 2006. Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). Journal of Agricultural and Food Chemistry 54(13): 4557-4567. DOI: https://doi.org/10.1021/jf0531050 DOI: https://doi.org/10.1021/jf0531050
Pedreschi, R. y L. Cisneros-Zevallos. 2007. Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry 100(3): 956-963. DOI: https://doi.org/10.1016/j.foodchem.2005.11.004 DOI: https://doi.org/10.1016/j.foodchem.2005.11.004
Peniche-Pavía, H. A. y A. Tiessen. 2020. Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. Journal of Agricultural and Food Chemistry 68(21): 5980-5994. DOI: https://doi.org/10.1021/acs.jafc.9b06336 DOI: https://doi.org/10.1021/acs.jafc.9b06336
Petroni, K., M. Trinei, M. Fornari, V. Calvenzani, A. Marinelli, L. A. Micheli, R. Pilu, A. Matros, H.-P. Mock, C. Tonelli y M. Giorgio. 2017. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutrition, Metabolism and Cardiovascular Diseases 27(5): 462-469. DOI: https://doi.org/10.1016/j.numecd.2017.02.002 DOI: https://doi.org/10.1016/j.numecd.2017.02.002
Ramos-Escudero, F., A. M. Muñoz, C. Alvarado-Ortíz, A. Alvarado y J. A. Yáñez. 2012. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of Medicinal Food 15(2): 206-215. DOI: https://doi.org/10.1089/jmf.2010.0342 DOI: https://doi.org/10.1089/jmf.2010.0342
Ranilla, L. G., B. A. Rios-Gonzales, M. F. Ramírez-Pinto, C. Fuentealba, R. Pedreschi y K. Shetty. 2021. Primary and phenolic metabolites analyses, in vitro health-relevant bioactivity and physical characteristics of purple corn (Zea mays L.) grown at two Andean geographical locations. Metabolites 11(11): 722. DOI: https://doi.org/10.3390/metabo11110722 DOI: https://doi.org/10.3390/metabo11110722
Rashed, E. R., T. El-Hamoly, M. M. El-Sheikh y M. A. El-Ghazaly. 2022. Pelargonidin ameliorates reserpine-induced neuronal mitochondrial dysfunction and apoptotic cascade: a comparative in vivo study. Drug and Chemical Toxicology 46(3): 462-471. DOI: https://doi.org/10.1080/01480545.2022.2050750 DOI: https://doi.org/10.1080/01480545.2022.2050750
Ratha, J., C. Yongram, P. Panyatip, P. Powijitkul, P. Siriparu, S. Datham, A. Priprem, T. Srisongkram y P. Puthongking. 2023. Polyphenol and tryptophan contents of purple corn (Zea mays L.) variety KND and butterfly pea (Clitoria ternatea) aqueous extracts: insights into phytochemical profiles with antioxidant activities and PCA analysis. Plants 12(3): 603. DOI: https://doi.org/10.3390/plants12030603 DOI: https://doi.org/10.3390/plants12030603
Rodríguez, M. D., L. Monsierra, P. S. Mansilla, G. T. Pérez y S. de Pascual-Teresa. 2024. Phenolic characterization of a purple maize (Zea mays cv. “Moragro”) by HPLC-QTOF-MS and study of its bioaccessibility using a simulated in vitro digestion/Caco-2 culture model. Journal of Agricultural and Food Chemistry 72(12): 6327-6338. DOI: https://doi.org/10.1021/acs.jafc.3c08960 DOI: https://doi.org/10.1021/acs.jafc.3c08960
Rodríguez Pérez, G., A. García Ramírez, F. de J. Reynaga Franco, J. E. Mendivil Mendoza, F. J. Salazar Huerta y D. M. Hidalgo Ramos. 2023. Composición fisicoquímica en granos de maíz morado mejorado (Zea mays L.) en el sur de Sonora, como alternativa funcional a la salud humana. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 4(1): 4327-4340. DOI: https://doi.org/10.56712/latam.v4i1.567 DOI: https://doi.org/10.56712/latam.v4i1.567
Rolandelli, G., L. C. Favre, T. R. Aguirre-Calvo, A. E. Farroni, M. del P. Buera y C. dos Santos Ferreira. 2023. An optimized purple corn cob extract as an ingredient for the development of maize-based extrudates with novel characteristics. Journal of Cereal Science 114: 103809. DOI: https://doi.org/10.1016/j.jcs.2023.103809 DOI: https://doi.org/10.1016/j.jcs.2023.103809
Sadowska-Bartosz, I. y G. Bartosz. 2024. Antioxidant activity of anthocyanins and anthocyanidins: a critical review. International Journal of Molecular Sciences 25(22): 12001. DOI: https://doi.org/10.3390/ijms252212001 DOI: https://doi.org/10.3390/ijms252212001
Saikaew, K., K. Lertrat, M. Meenune y R. Tangwongchai. 2018. Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chemistry 243: 328-337. DOI: https://doi.org/10.1016/j.foodchem.2017.09.136 DOI: https://doi.org/10.1016/j.foodchem.2017.09.136
Salinas Moreno, Y., C. García Salinas, B. Coutiño Estrada y V. Vidal Martínez. 2013. Variabilidad en contenido y tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Revista Fitotecnia Mexicana 36(S3-A): 285-294. DOI: https://doi.org/10.35196/rfm.2013.3-S3-A.285
Saucedo, A. L., M. M. Perales-Quintana, D. Paniagua-Vega, C. Sanchez-Martinez, P. Cordero-Perez y N. W. Minsky. 2018. Chronic kidney disease and the search for new biomarkers for early diagnosis. Current Medicinal Chemistry 25(31): 3719-3747. DOI: https://doi.org/10.2174/0929867325666180307110908 DOI: https://doi.org/10.2174/0929867325666180307110908
Scopus. 2024. Scopus database. Elsevier. https://www.scopus.com (consultado julio de 2024).
Sharma, M., M. Cortes-Cruz, K. R. Ahern, M. McMullen, T. P. Brutnell y S. Chopra. 2011. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188(1): 69-79. DOI: https://doi.org/10.1534/genetics.110.126136 DOI: https://doi.org/10.1534/genetics.110.126136
Shi, L., X. Li, Y. Fu y C. Li. 2023. Environmental stimuli and phytohormones in anthocyanin biosynthesis: a comprehensive review. International Journal of Molecular Sciences 24(22): 16415. DOI: https://doi.org/10.3390/ijms242216415 DOI: https://doi.org/10.3390/ijms242216415
Simla, S., S. Boontang y B. Harakotr. 2016. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Australian Journal of Crop Science 10(5): 675-682. DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7389 DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7389
Srinivas, K., J. W. King, L. R. Howard y J. K. Monrad. 2011. Binary diffusion coefficients of phenolic compounds in subcritical water using a chromatographic peak broadening technique. Fluid Phase Equilibria 301(2): 234-243. DOI: https://doi.org/10.1016/j.fluid.2010.12.003 DOI: https://doi.org/10.1016/j.fluid.2010.12.003
Strygina, K. V., A. V. Kochetov y E. K. Khlestkina. 2019. Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics 20(S1): 35. DOI: https://doi.org/10.1186/s12863-019-0728-x DOI: https://doi.org/10.1186/s12863-019-0728-x
Styles, E. D. y E. H. Coe. 1986. Unstable expression of an R allele with a3 in maize: a recessive intensifier of plant color. The Journal of Heredity 77(6): 389-393. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a110267 DOI: https://doi.org/10.1093/oxfordjournals.jhered.a110267
Subrin, S., M. F. Islam, M. A. Satter, J. Rahman, M. S. Zannat, M. F. Chowdhury y A. Hossain. 2022. Physico-functional and nutritional properties of pigmented and non-pigmented maize available in Bangladesh. Bangladesh Journal of Botany 51(3): 589-596. DOI: https://doi.org/10.3329/bjb.v51i3.62006 DOI: https://doi.org/10.3329/bjb.v51i3.62006
Sun, Y. A. N. y L. Li. 2018. Cyanidin-3-glucoside inhibits inflammatory activities in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. Clinical and Experimental Pharmacology and Physiology 45(10): 1038-1045. DOI: https://doi.org/10.1111/1440-1681.12970 DOI: https://doi.org/10.1111/1440-1681.12970
Suriano, S., C. Balconi, P. Valoti y R. Redaelli. 2021. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT-Food Science and Technology 144: 111257. DOI: https://doi.org/10.1016/j.lwt.2021.111257 DOI: https://doi.org/10.1016/j.lwt.2021.111257
Tan, J., Y. Li, D. X. Hou y S. Wu. 2019. The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants 8(10): 479. DOI: https://doi.org/10.3390/antiox8100479 DOI: https://doi.org/10.3390/antiox8100479
Tian, X.-Z., J.-X. Li, Q.-Y. Luo, D. Zhou, Q.-M. Long, X. Wang, Q. Lu y G.-L. Wen. 2021. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats. Frontiers in Veterinary Science 8: 715710. DOI: https://doi.org/10.3389/fvets.2021.715710 DOI: https://doi.org/10.3389/fvets.2021.715710
Tian, X. Z., P. Paengkoum, S. Paengkoum, S. Chumpawadee, C. Ban y S. Thongpea. 2019. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science 102(1): 413-418. DOI: https://doi.org/10.3168/jds.2018-15423 DOI: https://doi.org/10.3168/jds.2018-15423
Tian, X.-Z., P. Paengkoum, S. Paengkoum, S. Thongpea y C. Ban. 2018. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. Journal of Integrative Agriculture 17(9): 2082-2095. DOI: https://doi.org/10.1016/S2095-3119(18)61970-7 DOI: https://doi.org/10.1016/S2095-3119(18)61970-7
Trehan, S., N. Singh y A. Kaur. 2018. Characteristics of white, yellow, and purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. Journal of Food Science and Technology 55(6): 2334-2343. DOI: https://doi.org/10.1007/s13197-018-3171-5 DOI: https://doi.org/10.1007/s13197-018-3171-5
Tsuda, T., F. Horio, K. Uchida, H. Aoki y T. Osawa. 2003. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition 133(7): 2125-2130. DOI: https://doi.org/10.1093/jn/133.7.2125 DOI: https://doi.org/10.1093/jn/133.7.2125
Valle Campos, M., J. García Ceccarelli, D. Laos Anchante, C. E. Yarasca, E. Loyola Gonzales y F. Surco-Laos. 2019. Análisis proximal y cuantificación de antocianinas totales en Zea mays variedad morada sometido a diferentes procesos de secado. Revista de la Sociedad Química del Perú 85(1): 109-115. DOI: https://doi.org/10.37761/rsqp.v85i1.241 DOI: https://doi.org/10.37761/rsqp.v85i1.241
Vankar, P. S. y J. Srivastava. 2010. Evaluation of anthocyanin content in red and blue flowers. International Journal of Food Engineering 6(4). DOI: https://doi.org/10.2202/1556-3758.1907 DOI: https://doi.org/10.2202/1556-3758.1907
Vargas-Yana, D., B. Aguilar-Morón, N. Pezo-Torres, K. Shetty y L. G. Ranilla. 2020. Ancestral Peruvian ethnic fermented beverage “chicha” based on purple corn (Zea mays L.): unraveling the health-relevant functional benefits. Journal of Ethnic Foods 7: 1-12. DOI: https://doi.org/10.1186/s42779-020-00063-3 DOI: https://doi.org/10.1186/s42779-020-00063-3
Venkatesh, J., S. Y. Lee, S. Back, T. G. Kim, G. W. Kim, J. M. Kim, J. -K. Kwon y B. C. Kang. 2023. Update on the genetic and molecular regulation of the biosynthetic pathways underlying pepper fruit color and pungency. Current Plant Biology 35-36: 100303. DOI: https://doi.org/10.1016/j.cpb.2023.100303 DOI: https://doi.org/10.1016/j.cpb.2023.100303
VOSviewer. 2025. VOSviewer Visualizing scientific landscapes. Leiden University. Leiden, Países Bajos. https://www.vosviewer.com/ (consultado julio de 2024).
Wang, Q., J. Zhu, B. Li, S. Li, Y. Yang, Q. Wang, W. Xu y L. Wang. 2023. Functional identification of anthocyanin glucosyltransferase genes: a Ps3GT catalyzes pelargonidin to pelargonidin 3-O-glucoside painting the vivid red flower color of Paeonia. Planta 257(4): 65. DOI: https://doi.org/10.1007/s00425-023-04095-2 DOI: https://doi.org/10.1007/s00425-023-04095-2
Wu, Q., Y. Zhang, H. Tang, Y. Chen, B. Xie, C. Wang y Z. Sun. 2017. Separation and identification of anthocyanins extracted from blueberry wine lees and pigment binding properties toward β-glucosidase. Journal of Agricultural and Food Chemistry 65(1): 216-223. DOI: https://doi.org/10.1021/acs.jafc.6b04244 DOI: https://doi.org/10.1021/acs.jafc.6b04244
Xu, H., M. Liu, H. Liu, B. Zhao, M. Zheng y J. Liu. 2021. Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK. Journal of Functional Foods 84: 104582. DOI: https://doi.org/10.1016/j.jff.2021.104582 DOI: https://doi.org/10.1016/j.jff.2021.104582
Xu, Y., D. Hu, Y. Li, C. Sun y W. Chen. 2018. An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. Journal of Chromatography B 1072: 211-220. DOI: https://doi.org/10.1016/j.jchromb.2017.11.025 DOI: https://doi.org/10.1016/j.jchromb.2017.11.025
Yamaguchi, M. A., S. Kawanobu, T. Maki y I. Ino. 1996. Cyanidin 3-malonylglucoside and malonyl-coenzyme a: anthocyanidin malonyltransferase in Lactuca sativa leaves. Phytochemistry 42(3): 661-663. DOI: https://doi.org/10.1016/0031-9422(96)00025-8 DOI: https://doi.org/10.1016/0031-9422(96)00025-8
Yang, L., C. Rong-Rong, F. Ji-Li y Y. Ke. 2019. Total anthocyanins and cyanidin-3-O-glucoside contents and antioxidant activities of purified extracts from eight different pigmented plants. Pharmacognosy Magazine 15(60): 124-129. DOI: https://doi.org/10.4103/pm.pm_162_18 DOI: https://doi.org/10.4103/pm.pm_162_18
Yang, Z. y W. Zhai. 2010. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science & Emerging Technologies 11(1): 169-176. DOI: https://doi.org/10.1016/j.ifset.2009.08.012 DOI: https://doi.org/10.1016/j.ifset.2009.08.012
Yoshida, K. 2024. Chemical and biological study of flavonoid-related plant pigment: current findings and beyond. Bioscience, Biotechnology & Biochemistry 88(7): 705-718. DOI: https://doi.org/10.1093/bbb/zbae048 DOI: https://doi.org/10.1093/bbb/zbae048
Zaffino, C., B. Russo y S. Bruni. 2015. Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 149: 41-47. DOI: https://doi.org/10.1016/j.saa.2015.04.039 DOI: https://doi.org/10.1016/j.saa.2015.04.039
Zhang, C., X. Li, Z. Wang, Z. Zhang y Z. Wu. 2020. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics 112(6): 5157-5169. DOI: https://doi.org/10.1016/j.ygeno.2020.09.030 DOI: https://doi.org/10.1016/j.ygeno.2020.09.030
Zhang, P., S. Liu, Z. Zhao, L. You, M. D. Harrison y Z. Zhang. 2021. Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry 343: 128482. DOI: https://doi.org/10.1016/j.foodchem.2020.128482 DOI: https://doi.org/10.1016/j.foodchem.2020.128482
Zhao, Q., C. Q. Duan y J. Wang. 2010. Anthocyanins Profile of Grape Berries of Vitis amurensis, Its Hybrids and Their Wines. International Journal of Molecular Sciences 11(5): 2212-2228. DOI: https://doi.org/10.3390/ijms11052212 DOI: https://doi.org/10.3390/ijms11052212

Publicado
Cómo citar
-
Resumen513
-
PDF107
-
EPUB9
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Acta Botanica Mexicana reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto. Acta Botanica Mexicana no realiza cargos a los autores por enviar y procesar artículos para su publicación.
Todos los textos publicados por Acta Botanica Mexicana –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Acta Botanica Mexicana (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en Acta Botanica Mexicana.
Para todo lo anterior, el corrector de originales le solicitará junto con la revisión de galeras, que expida su Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Esta carta se debe enviar por correo electrónico en archivo pdf al correo: acta.botanica@inecol.mx (Carta-Cesión de Propiedad de Derechos de Autor).