Publicado 2018-05-30
Palabras clave
- Laguncularia racemosa,
- nutrient content,
- phenology,
- white mangrove
- contenido de nutrientes,
- fenología,
- Laguncularia racemosa,
- mangle blanco
Derechos de autor 2018 Acta Botanica Mexicana

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Resumen
Antecedentes y Objetivos: Los eventos fenológicos en manglares suelen estar influidos por factores como la salinidad del agua, fotoperiodo y/o temperatura ambiental. Esto se ha documentado principalmente para especies de la familia Rhizophoraceae y Acanthaceae; sin embargo, son limitados los estudios accesibles para la familia Combretaceae, p. ej. Laguncularia racemosa.
Métodos: Se colectaron durante un año, mensualmente, de tres a cuatro hojas del antepenúltimo y penúltimo entrenudo de las ramas de 10 árboles de Laguncularia racemosa. La colecta de hojas se realizó teniendo en cuenta ocho etapas fenológicas. Los nutrientes analizados en las hojas fueron: N total, PO, K+, Ca2+, Mg2+, SO, Na+, Fe2+, Cu2+, B (H3BO3), Mn2+ y Zn2+. Adicionalmente, 10 muestras de agua intersticial (para medir iones mayores) y sedimento (para medir el pH y cuantificar el contenido de materia orgánica) se tomaron a una profundidad de entre 0.3 a 0.6 m.
Resultados clave: Los nutrientes K+, Ca2+, Fe2+, Mg2+, y N total presentaron valores máximos a lo largo del desarrollo de la brotación vegetativa hasta el desarrollo de “frutos”, lo cual significa que la mayor importancia de estos nutrientes es en la producción de “frutos”. El Na+ mostró su mayor concentración (22.8 g kg-1) en la fase de inicio de floración y la mínima durante la quiescencia (8.7 g kg-1). En contraste, el SO, PO, Cu2+, B (H3BO3), Zn2+ no presentaron diferencias. Finalmente, el Mn2+ presentó 109 mg kg-1 al final de la brotación vegetativa y 34 mg kg-1 en la madurez y caída de “frutos”.
Conclusiones: En la absorción de nutrientes son importantes las etapas fenológicas y las condiciones climáticas locales.
Citas
- Alongi, M. D. 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. Journal of Marine Research 54(1): 123-148. DOI: https://doi.org/10.1357/0022240963213475 DOI: https://doi.org/10.1357/0022240963213475
- Analuddin, K., S. Sharma, R. Suwa y A. Hagihara. 2009. Crown foliage dynamics of mangrove Kandelia obovata in Manko wetland, Okinawa Island, Japan. Journal of Oceanography 65(1): 121-127. DOI: https://dx.doi.org/10.1007/s10872-009-0012-1 DOI: https://doi.org/10.1007/s10872-009-0012-1
- Asaeda, T. y M. Kalibbala. 2009. Modelling growth and primary production of the marine mangrove (Rhizophora apiculata BL): A dynamic approach. Journal of Experimental Marine Biology and Ecology 371(2): 103-111. DOI: https://doi.org/10.1016/j.jembe.2009.01.009 DOI: https://doi.org/10.1016/j.jembe.2009.01.009
- Bashan, Y. y G. Holguin. 2002. Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16(2-3): 159-166. DOI: https://dx.doi.org/10.1007/s00468-001-0152-4 DOI: https://doi.org/10.1007/s00468-001-0152-4
- Benítez-Pardo, D., M. Hernández-Montoya, T. Osuna-Enciso, M. Valenzuela-López y B. Galván-Piña. 2003. Muestreo y análisis foliar relacionado con fenología en mango en el sur de Sinaloa, México. Terra 21(2): 273-283.
- Blasco, F., P. Saenger y E. Janodet. 1996. Mangroves as indicators of coastal change. Catena 27(3-4): 167-178. DOI: https://doi.org/10.1016/0341-8162(96)00013-6 DOI: https://doi.org/10.1016/0341-8162(96)00013-6
- Borchert, R. y G. Rivera. 2001. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiology 21(4): 213-221. DOI: https://dx.doi.org/10.1093/treephys/21.4.213 DOI: https://doi.org/10.1093/treephys/21.4.213
- Cannicci, S., D. Burrows, S. Fratini, T. J. Smith III, J. Offenberg y F. Dahdouh-Guebas. 2008. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquatic Botany 89(2): 186-220. DOI: https://dx.doi.org/10.1016/j.aquabot.2008.01.009 DOI: https://doi.org/10.1016/j.aquabot.2008.01.009
- Clough, B., D. T. Tan, D. X. Phuong y D. C. Buu. 2000. Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany 66(4): 311-320. DOI: https://dx.doi.org/10.1016/S0304-3770(99)00081-9 DOI: https://doi.org/10.1016/S0304-3770(99)00081-9
- Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham y M. Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5): 293-297. DOI: https://dx.doi.org/10.1038/NGEO1123 DOI: https://doi.org/10.1038/ngeo1123
- Duke, N. C. 1990. Phenological trends with latitude in the mangrove tree Avicennia marina. Journal of Ecology 78(1): 113-133. DOI: https://dx.doi.org/10.2307/2261040 DOI: https://doi.org/10.2307/2261040
- Duke, N. C., J. O. Meynecke, S. Dittman, A. M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K. C. Ewel, C. D. Field, N. Koedam, S. Y. Lee, C. Marchand, I. Nordhaus y F. Dahdouh-Guebas. 2007. A world without mangroves? Science 317(5834): 41b-42b. DOI: https://dx.doi.org/10.1126/science.317.5834.41b DOI: https://doi.org/10.1126/science.317.5834.41b
- Feller, I. C., D. F. Whigham, J. P. O’Neill y K. L. McKee. 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80(7): 2193-2205. DOI: https://dx.doi.org/10.1890/0012-9658(1999)080%5B2193:EONEOW%5D2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[2193:EONEOW]2.0.CO;2
- Flores-de-Santiago, F., J. M. Kovacs y F. Flores-Verdugo. 2012. Seasonal changes in leaf chlorophyll a content and morphology in a sub-tropical mangrove forest of the Mexican Pacific. Marine Ecology Progress Series 444: 57-68. DOI: https://dx.doi.org/10.3354/meps09474 DOI: https://doi.org/10.3354/meps09474
- Flores-de-Santiago, F., J. M. Kovacs y F. Flores-Verdugo. 2013a. The influence of seasonality in estimating mangrove leaf chlorophyll-a content from hyperspectral data. Wetlands Ecology and Management 21(3): 193-207. DOI: https://doi.org/10.1007/s11273-013-9290-x DOI: https://doi.org/10.1007/s11273-013-9290-x
- Flores-de-Santiago, F., J. M. Kovacs y F. Flores-Verdugo. 2013b. Assessing the utility of a portable pocket instrument for estimating seasonal mangrove leaf chlorophyll contents. Bulletin of Marine Science 89(2): 621-633. DOI: https://dx.doi.org/10.5343/bms.2012.1032 DOI: https://doi.org/10.5343/bms.2012.1032
- Flores-Verdugo, F. J., J. W. Day y R. Briseño-Dueñas. 1987. Structure, litter fall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Marine Ecology Progress Series 35: 83-90. DOI: https://dx.doi.org/10.3354/meps035083 DOI: https://doi.org/10.3354/meps035083
- Gill, A. M. y P. B. Tomlinson. 1971. Studies of the growth of red mangrove (Rhizophora mangle L.) 3. Phenology of the shoot. Biotropica 3(2): 109-124. DOI: https://doi.org/10.2307/2989815 DOI: https://doi.org/10.2307/2989815
- Gilman, E. L., J. Ellison, N. C. Duke y C. Field. 2008. Threats to mangrove from climate change and adaptation options: A review. Aquatic Botany 89(2): 237-250. DOI: https://dx.doi.org/10.1016/j.aquabot.2007.12.009 DOI: https://doi.org/10.1016/j.aquabot.2007.12.009
- Gwada, P., T. Makoto y Y. Uezu. 2000. Leaf phenological traits in the mangrove Kandelia candel (L.) Druce. Aquatic Botany 68(1): 1-14. DOI: https://dx.doi.org/10.1016/S0304-3770(00)00109-1 DOI: https://doi.org/10.1016/S0304-3770(00)00109-1
- Hegazy, A. K. 1998. Perspective on survival, phenology, litter fall and decomposition, and caloric content of Avicennia marina in the Arabian Gulf region. Journal of Arid Environments 40(4): 417-429. DOI: https://doi.org/10.1006/jare.1998.0457 DOI: https://doi.org/10.1006/jare.1998.0457
- INEGI. 2013. Anuario estadístico del estado de Sinaloa. Instituto Nacional de Estadística y Geografía. México, D.F., México.
- Kamruzzaman, M., S. Sharma, M. Kamara M. y A. Hagihara. 2013. Phenological traits of the mangrove Rhizophora stylosa Griff. at the northern limit of its biogeographical distribution. Wetlands Ecology and Management 21(4): 277-288. DOI: https://dx.doi.org/10.1007/s11273-013-9299-1 DOI: https://doi.org/10.1007/s11273-013-9299-1
- Komiyama, A., J. E. Ong y S. Poungparn. 2008. Allometry, biomass, and productivity of mangrove forest: A review. Aquatic Botany 89(2): 128-137. DOI: https://doi.org/10.1016/j.aquabot.2007.12.006 DOI: https://doi.org/10.1016/j.aquabot.2007.12.006
- Kovacs, J. M., J. Malczewski y F. Flores-Verdugo. 2004. Examining local ecological knowledge of hurricane impacts in a mangrove forest using an Analytical Hierarchy Process (AHP) approach. Journal of Coastal Research 203: 792-800. DOI: https://dx.doi.org/10.2112/1551-5036(2004)20%5B792:ELEKOH%5D2.0.CO;2 DOI: https://doi.org/10.2112/1551-5036(2004)20[792:ELEKOH]2.0.CO;2
- Kristensen, E., S. Bouillonn, T. Dittmar y C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89(2): 201-219. DOI: https://dx.doi.org/10.1016/j.aquabot.2007.12.005 DOI: https://doi.org/10.1016/j.aquabot.2007.12.005
- Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academia Press. Amsterdam, Netherlands. 889 pp. DOI: https://doi.org/10.1016/b978-0-12-473542-2.x5000-7 DOI: https://doi.org/10.1016/B978-0-12-473542-2.X5000-7
- McKee, K. L. 1995. Interspecific Variation in Growth, Biomass Partitioning, and Defensive Characteristics of Neotropical Mangrove Seedlings: Response to Light and Nutrient Availability. American Journal of Botany 82(3): 299-307. DOI: https://doi.org/10.2307/2445575 DOI: https://doi.org/10.1002/j.1537-2197.1995.tb12634.x
- Medina, E., A. E. Lugo y A. Novelo. 1995. Contenido mineral del tejido foliar de especies de manglar de la Laguna de Sontecomapan (Veracruz, México) y su relación con la salinidad. Biotropica 27(3): 317-323. DOI: https://doi.org/10.2307/2388917 DOI: https://doi.org/10.2307/2388917
- Mehlig, U. 2006. Phenology of the red mangrove, Rhizophora mangle L., in the Caeté Estuary, Pará, equatorial Brazil. Aquatic Botany 84(2): 158-164. DOI: https://dx.doi.org/10.1016/j.aquabot.2005.09.007 DOI: https://doi.org/10.1016/j.aquabot.2005.09.007
- Nadia, T. L., L. P. Cerdeira-Morellato e I. C. Machado. 2012. Reproductive phenology of northeast Brazilian mangrove community: Environmental and biotic constraints. Flora 207(9): 682-692. DOI: https://dx.doi.org/10.1016/j.flora.2012.06.020 DOI: https://doi.org/10.1016/j.flora.2012.06.020
- Nagelkerken, I., S. J. M. Blaber, S. Bouillon, P. Green, M. Haywood, L. G. Kirton, J. O. Meynecke, J. Pawlik, H. M. Penrose, A. Sasekumar y P. J. Somerfield. 2008. The habitat function of mangrove for terrestrial and marine fauna: A review. Aquatic Botany 89(2): 155-185. DOI: https://dx.doi.org/10.1016/j.aquabot.2007.12.007 DOI: https://doi.org/10.1016/j.aquabot.2007.12.007
- Polidoro, B. A., K. E. Carpenter, L. Collins, N. C. Duke, A. M. Ellison, J. C. Ellison, E. J. Farnsworth, E. S. Fernando, K. Kathiresan, N. E. Koedam, S. R. Livingstone, T. Miyagi, G. E. Moore, V. N. Nam, J. E. Ong, J. H. Primavera, S. G. Salmo, J. C. Sanciangco, S. Sukardjo, Y. Wang y J. W. Hong Yong. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLOS One 5(4): e10095. DOI: https://dx.doi.org/10.1371/journal.pone.0010095 DOI: https://doi.org/10.1371/journal.pone.0010095
- Raven, P. H., R. F. Evert y S. E. Eichhorn. 2012. Biology of plants. 8th ed. W. H. Freeman & Company Press. New York, USA. 900 pp.
- Saenger, P. y J. Moverley. 1985. Vegetative phenology of mangroves along the Queensland coastline. The Proceedings of the Ecological Society of Australia 13: 257-265.
- Salisbury, F. B. y C. W. Ross 1992. Plant Physiology. 4th ed. Wadsworth Publishing Company. California, USA. 682 pp.
- Sobrado, M. A. 2005. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43(2): 217-221. DOI: https://doi.org/10.1007/s11099-005-0036-8 DOI: https://doi.org/10.1007/s11099-005-0036-8
- Soto, R. 1992. Nutrient concentration and retranslocation in coastal vegetation and mangroves from the pacific coast of Costa Rica. Brenesia 37: 33-50.
- Valiela, I., J. L. Bowen y J. K. York. 2001. Mangrove forest: One of the world’s threatened major tropical environments. BioScience 51(10): 807-815. DOI: https://dx.doi.org/10.1641/0006-3568(2001)051%5B0807:MFOOTW%5D2.0.CO;2 DOI: https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
- Wafar, S., A. G. Untawale y M. Wafar. 1997. Litter fall and energy flux in a mangrove ecosystem. Estuarine Coastal Shelf Science 44(1): 111-124. DOI: https://dx.doi.org/10.1006/ecss.1996.0152 DOI: https://doi.org/10.1006/ecss.1996.0152
- Walters, B. B., P. Rönnbäck, J. M. Kovacs, B. Crona, A. Hussain, R. Badola, F. Dahdouh-Guebas y E. Barbier. 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany 89(2): 220-236. DOI: https://dx.doi.org/10.1016/j.aquabot.2008.02.009 DOI: https://doi.org/10.1016/j.aquabot.2008.02.009
- Wium-Andersen, S. 1981. Seasonal growth of mangrove trees in southern Thailand. III. Phenology of Rhizophora apiculata Lamk, and Scyphiphora hydrophyllaceae Gaertn. Aquatic Botany 10: 371-376. DOI: https://doi.org/10.1016/0304-3770(81)90035-8 DOI: https://doi.org/10.1016/0304-3770(81)90035-8
- Wium-Andersen, S. y B. Christensen. 1978. Seasonal growth of mangrove trees in southern Thailand. II. Phenology of Bruguiera cylindrical, Ceriops tagal, Lumnitzera littorea and Avicennia marina. Aquatic Botany 5: 383-390. DOI: https://doi.org/10.1016/0304-3770(78)90078-5 DOI: https://doi.org/10.1016/0304-3770(78)90078-5