Núm. 129 (2022)
Artículo de investigación

Sequía experimental en plántulas en un claro y en el sotobosque de un bosque de niebla, Veracruz, México

Avril Manrique-Ascencio
Instituto de Ecología, A.C. (INECOL), Red de Ecología Funcional
Biografía
Guadalupe Williams-Linera
Instituto de Ecología, A.C. (INECOL), Red de Ecología Funcional
Biografía
Ernesto I. Badano
Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), División de Ciencias Ambientales
Biografía

Publicado 2022-09-22

Palabras clave

  • climate change,
  • functional traits,
  • pioneer tree,
  • shade-tolerant trees,
  • specific leaf area,
  • survival
  • ...Más
    Menos
  • árbol pionero,
  • árboles tolerantes a la sombra,
  • área foliar específica,
  • cambio climático,
  • rasgos funcionales,
  • supervivencia.
  • ...Más
    Menos

Resumen

Antecedentes y Objetivos: Se espera que las sequías inducidas por el cambio climático afecten al bosque de niebla. Como los rasgos funcionales son indicadores útiles del desempeño de especies vegetales, el objetivo de este trabajo fue determinar el efecto del ambiente lumínico y la sequía sobre área foliar (AF), área foliar específica (AFE), contenido de clorofila, grosor, dureza foliar, supervivencia y tasas de crecimiento relativo (TCR) de plántulas en sotobosque y claro.

Métodos: En un bosque de niebla en Veracruz, México, se usaron exclusiones de lluvia para simular sequía en sotobosque y claro. Se midieron AF, AFE, contenido de clorofila, grosor, dureza, supervivencia y TCR en Eugenia capuli (especie de sotobosque tolerante a la sombra), Liquidambar styraciflua (especie del dosel de tolerancia intermedia) y Trema micranthum (árbol pionero colonizador de claros) en sotobosque-control y -sequía, y claro-control y -sequía.

Resultados clave: El AF aumentó con sequía en E. capuli en claro y decreció para L. styraciflua en ambos ambientes lumínicos. El contenido de clorofila fue similar entre tratamientos de agua para E. capuli y L. styraciflua en sotobosque. El grosor y dureza foliares difirieron con sequía para E. capuli y L. styraciflua en claro. Los rasgos foliares de T. micranthum cambiaron solo en sotobosque. Eugenia capuli presentó la mayor y similar supervivencia entre tratamientos. Liquidambar styraciflua mostró una mayor supervivencia en claro-sequía, y T. micranthum en claro. Eugenia capuli tuvo la mayor TCR en sotobosque, mientras que T. micranthum en claro.

Conclusiones: Los rasgos funcionales de plántulas de E. capuli y L. styraciflua respondieron a sequía moderada más en claro que en sotobosque. Los resultados sugieren que los rasgos funcionales de las especies intermedia y tolerante a la sombra tienden a cambiar menos bajo una sequía moderada, que los del árbol pionero si se mantiene el ambiente lumínico forestal.

Citas

  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier and N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660-684. DOI: https://doi.org/10.1016/j.foreco.2009.09.001
  2. Allen, C. D., D. D. Breshears and N. G. McDowell. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8): 129. DOI: http://dx.doi.org/10.1890/ES15-00203.1
  3. Amissah, L., G. M. Mohren, B. Kyereh and L. Poorter. 2015. The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS One 10(4): e0121004. DOI: https://doi.org/10.1371/journal.pone.0121004
  4. Badano, E. I., F. A. Guerra-Coss, S. M. Gelviz-Gelvez, J. Flores and P. Delgado-Sánchez. 2018. Functional responses of recently emerged seedlings of an endemic Mexican oak (Quercus eduardii) under climate change conditions. Botanical Sciences 96(4): 582-597. DOI: https://doi.org/10.17129/botsci.1988
  5. Badano, E. I., F. A. Guerra-Coss, C. I. Briones-Herrera and S. M. Gelviz-Gelvez. 2019. Climate change effects on early stages of Quercus ariifolia (Fagaceae), an endemic oak from seasonally dry forests of Mexico. Acta Botanica Mexicana 126: e1466. DOI: https://doi.org/10.21829/abm126.2019.1466
  6. Beier, C., C. Beierkuhnlein, T. Wohlgemuth, J. Penuelas, B. Emmett, C. Körner and K. Hansen. 2012. Precipitation manipulation experiments–challenges and recommendations for the future. Ecology Letters 15(8): 899-911. DOI: https://doi.org/10.1111/j.1461-0248.2012.01793.x
  7. Berry, Z. C., X. Espejel, G. Williams‐Linera and H. Asbjornsen. 2019. Linking coordinated hydraulic traits to drought and recovery responses in a tropical montane cloud forest. American Journal of Botany 106(10): 1316-1326. DOI: https://doi.org/10.1002/ajb2.1356
  8. Bruijnzeel L. A., M. Kappelle, M. Mulligan and F. N. Scatena. 2010. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel, L. A., F. N. Scatena and L. S. Hamilton (eds.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press. Cambridge, UK. Pp. 691-740.
  9. Buajan, S., J. Liu, Z. He, X. Feng and M. Abrar. 2017. The effect of light on micro-environment and specific leaf area within the gap, subtropical forest, China. Pakistan Journal of Botany 49(1): 273-282.
  10. Esperón-Rodríguez, M., M. Bonifacio-Bautista and V. L. Barradas. 2016. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico. Ambio 45: 146-160. DOI: https://doi.org/10.1007/s13280-015-0690-4
  11. Evans, J. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment 24(8): 755-767. DOI: https://doi.org/10.1046/j.1365-3040.2001.00724.x
  12. Hunt, R. 1990. Basic Growth Analysis. Unwin-Hyman Ltd. London, UK. 112 pp.
  13. Kitajima, K. and L. Poorter. 2010. Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist 186(3): 708-721. DOI: https://doi.org/10.1111/j.1469-8137.2010.03212.x
  14. Meier, I. C. and C. Leuschner. 2008. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11(5): 655-669. DOI: https://doi.org/10.1007/s10021-008-9135-2
  15. Muñiz‐Castro, M. A., G. Williams‐Linera and J. Benítez‐Malvido. 2015. Restoring montane cloud forest: establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restoration Ecology 23(1): 26-33. DOI: https://doi.org/10.1111/rec.12155
  16. Olguin, F. Y., A. P. Moretti, M. Pinazo, F. Gortari, J. V. Bahima and C. Graciano. 2020. Morphological and physiological plasticity in seedlings of Araucaria angustifolia and Cabralea canjerana is related to plant establishment performance in the rainforest. Forest Ecology and Management 460: 117867. DOI: https://doi.org/10.1016/j.foreco.2020.117867
  17. Onoda, Y., M. Westoby, P. B. Adler, A. M. F. Choong, F. J. Clissold, J. H. C. Cornelissen, S. Díaz, N. J. Dominy, A. Elgart, L. Enrico, P. V. A. Fine, J. J. Howard, A. Jalili, K. Kitajima, H. Kurokawa, C. McArthur, P. W. Lucas, L. Markesteijn, N. Pérez-Harguindeguy, L. Poorter, L. Richards, L. S. Santiago, E. E. Sosinski Jr, S. A. Van Bael, D. I. Warton, I. J. Wright, S. J. Wright and N. Yamashita. 2011. Global patterns of leaf mechanical properties. Ecology Letters 14(3): 301-312. DOI: https://doi.org/10.1111/j.1461-0248.2010.01582.x
  18. Pandey, S. K., H. Singh and J. S. Singh. 2009. Species and site effects on leaf traits of woody vegetation in a dry tropical environment. Current Science 96(8): 1109-1114.
  19. Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. S. Bret-Harte, W. K. Cornwell, J. M. Craine, D. E. Gurvich, C. Urcelay, E. J. Veneklaas, P. B. Reich, L. Poorter, I. J. Wright, P. Ray, L. Enrico, J. G. Pausas, A. C. de Vos, N. Buchmann, G. Funes, F. Quétier, C. J. G. Hodgson, K. Thompson, H. D. Morgan, H. ter Steege, M. G. A. van der Heijden, L. Sack, B. Blonder, P. Poschlod, M. V. Vaieretti, G. Conti, A. C. Staver, S. Aquino and J. H. C. Cornelissen. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167-234. DOI: https://doi.org/10.1071/BT12225
  20. Poorter, L. and F. Bongers. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7): 1733-1743. DOI: https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
  21. Poorter, L. and L. Markesteijn. 2008. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40(3): 321-331. DOI: https://doi.org/10.1111/j.1744-7429.2007.00380.x
  22. Poorter, L. and D. M. Rozendaal. 2008. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia 158(1): 35-46. DOI: https://doi.org/10.1007/s00442-008-1131-x
  23. R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/ (consulted, September 2018).
  24. Reich, P. B. 2014. The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102(2): 275-301. DOI: https://doi.org/10.1111/1365-2745.12211
  25. Riaño, K. and O. Briones. 2015. Sensitivity of three tree ferns during their first phase of life to the variation of solar radiation and water availability in a Mexican cloud forest. American Journal of Botany 102(9): 1472-1481. DOI: https://doi.org/10.3732/ajb.1500228
  26. SAS. 2012. JMP 10.0.0. SAS Institute Inc. Cary, USA.
  27. Saldaña-Acosta, A., J. A. Meave and L. R. Sánchez-Velásquez. 2009. Seedling biomass allocation and vital rates of cloud forest tree species: responses to light in shade house conditions. Forest Ecology and Management 258(7): 1650-1659. DOI: https://doi.org/10.1016/j.foreco.2009.07.027
  28. Toledo-Aceves, T., F. López-Barrera and V. Vásquez-Reyes. 2017. Preliminary analysis of functional traits in cloud forest tree seedlings. Trees 31(4): 1253-1262. DOI: https://doi.org/10.1007/s00468-017-1543-5
  29. Valladares, F. and D. Sánchez-Gómez. 2006. Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biology 8(5): 688-697. DOI: https://doi.org/10.1055/s-2006-924107
  30. Vergara‐Gómez, D., G. Williams‐Linera and F. Casanoves. 2020. Leaf functional traits vary within and across tree species in tropical cloud forest on rock outcrop versus volcanic soil. Journal of Vegetation Science 31(1): 129-138. DOI: https://doi.org/10.1111/jvs.12826
  31. Westbrook, J. W., K. Kitajima, J. G. Burleigh, W. J. Kress, D. L. Erickson and S. J. Wright. 2011. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest. The American Naturalist 177(6): 800-811. DOI: https://doi.org/10.1086/659963
  32. Williams-Linera, G. 2002. Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11(10): 1825-1843. DOI: https://doi.org/10.1023/a:1020346519085
  33. Williams-Linera, G. and A. Manrique-Ascencio. 2020. Functional traits of tree saplings and adults in a tropical cloud forest restoration context. Botanical Sciences 98(1): 76-85. DOI: https://doi.org/10.17129/botsci.2406
  34. Williams-Linera, G., Z. C. Berry, M. H. Díaz‑Toribio and X. Espejel‑Ontiveros. 2022. Drought responses of an exotic tree (Eriobotrya japonica) in a tropical cloud forest suggest the potential to become an invasive species. New Forests 53: 571-585. DOI: https://doi.org/10.1007/s11056-021-09873-y
  35. Wright, S. J., H. C. Muller-Landau, R. Condit and S. P. Hubbell. 2003. Gap‐dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84(12): 3174-3185. DOI: https://doi.org/10.1890/02-0038
  36. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender- Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428(6985): 821-827. DOI: http://dx.doi.org/10.1038/nature02403