Núm. 129 (2022)
Artículo de investigación

Nueva información del perfil de compuestos bioactivos, potencial antioxidante y antiproliferativo de Parkinsonia praecox (Fabaceae)

Julio Cesár López-Romero
Universidad de Sonora, Unidad Regional Norte, Departamento de Ciencias Químico Biológicas y Agropecuarias
Heriberto Torres-Moreno
Universidad de Sonora, Unidad Regional Norte, Departamento de Ciencias Químico Biológicas y Agropecuarias
Dora Edith Valencia-Rivera
Universidad de Sonora, Unidad Regional Norte, Departamento de Ciencias Químico Biológicas y Agropecuarias
Mario Alberto Leyva-Peralta
Universidad de Sonora, Unidad Regional Norte, Departamento de Ciencias Químico Biológicas y Agropecuarias
Ramón Efraín Lugo-Sepúlveda
Universidad de Sonora, Unidad Regional Norte, Departamento de Ciencias Químico Biológicas y Agropecuarias
Ramón Enrique Robles-Zepeda
Universidad de Sonora, Departamento de Ciencias Químico Biológicas
Karen Lillian Rodríguez-Martínez
Universidad Estatal de Sonora, Unidad Académica Hermosillo, Licenciatura en Nutrición Humana
Mónica Alejandra Villegas-Ochoa
Centro de Investigación en Alimentación y Desarrollo, A.C.
Norma Julieta Salazar-López
Centro de Investigación en Alimentación y Desarrollo, A.C.
Gustavo Adolfo González-Aguilar
Centro de Investigación en Alimentación y Desarrollo, A.C.

Publicado 2022-12-14

Palabras clave

  • biological activities,
  • bioactive compounds,
  • Sonoran desert,
  • medicinal plants
  • actividades biológicas,
  • compuestos bioactivos,
  • Desierto de Sonora,
  • plantas medicinales

Métrica

Resumen

Antecedentes y Objetivos: Parkinsonia praecox,“palo brea”, es una planta medicinal distribuida en el Desierto de Sonora en México. Sin embargo, existe poca información acerca de la composición química y del potencial biológico de esta planta. Basado en lo anterior, el objetivo del presente estudio fue determinar la composición química y el potencial antioxidante y antiproliferativo de P. praecox.
Métodos: Se prepararon extractos metanólicos de tallos (PPS), frutos (PPB) y flores (PPF). La composición química se determinó a través de los métodos de perfil fitoquímico, Folin-Ciocalteu y UPLC-DAD. La actividad antioxidante se evaluó por los métodos DPPH, ABTS, ORAC y FRAP. La actividad antiproliferativa se determinó por el ensayo MTT contra las líneas celulares A549 (cáncer de pulmón de células no pequeñas), MDA-MB-231 (cáncer de mama triple negativo), PC-3 (cáncer de próstata grado IV), HeLa (cáncer de cervix) y L929 (tejido conectivo subcutáneo no canceroso).
Resultados: El perfil fitoquímico mostró la presencia de terpenos, compuestos fenólicos, flavonoides, taninos y azúcares en los extractos. PPS presentó la concentración más elevada (p<0.05) de compuestos fenólicos (65.5 mg GAE/g), identificando y cuantificando quercetina (218.86 µg/g). Además, PPS mostró la capacidad más elevada (p<0.05) para estabilizar a los radicales DPPH (IC50: 137 µg/ml), ABTS (39.56 µM TE/g), hidroxilo (ORAC: 1777.78 µM TE/g), y reducir metales (FRAP: 935.6 µM Fe(II)/g). Un comportamiento similar se observó en la actividad antiproliferativa, ya que PPS mostró la citotoxicidad más elevada (p<0.05): A549 (IC50: 341.3 µg/ml), MDA-MB-231 (IC50: 147.3 µg/ml), PC-3 (IC50: 78.8 µg/ml), HeLa (IC50: 121.6 µg/ml) y L929 (IC50: 93.29 µg/ml).
Conclusión: Este es el primer estudio donde se reporta el perfil de compuestos bioactivos y el potencial biológico de P. praecox. Los resultados muestran una fuerte asociación entre la actividad antioxidante y antiproliferativa con la presencia de compuestos fenólicos. Esto representa un potencial soporte para el desarrollo de terapias farmacológicas.

Métricas

Cargando métricas ...

Citas

  1. Abdelaziz, S., H. M. Al Yousef, A. S. Al-Qahtani, W. H. B. Hassan, O. I. Fantoukh and M. A. El-Sayed. 2020. Phytochemical profile, antioxidant and cytotoxic potential of Parkinsonia aculeata L. growing in Saudi Arabia. Saudi Pharmaceutical Journal 28(9):1129-1137. DOI: https://doi.org/10.1016/j.jsps.2020.08.001 DOI: https://doi.org/10.1016/j.jsps.2020.08.001
  2. Abotaleb, M., A. Liskova, P. Kubatka and D. Büsselberg. 2020. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10(2): 221. DOI: https://doi.org/10.3390/biom10020221 DOI: https://doi.org/10.3390/biom10020221
  3. Adu, J., C. Amengor, N. Kabiri, E. Orman, S. Gameli and B. Korkor. 2019. Validation of a simple and robust Liebermann-Burchard colorimetric method for the assay of colesterol in selected milk products in Ghana. International Journal of Food Science 2019: 9045938. DOI: https://doi.org/10.1155/2019/9045938 DOI: https://doi.org/10.1155/2019/9045938
  4. Akter, K., E. C. Barnes, J. J. Brophy, D. Harrington, Y. Community Elders, S. R. Vemulpad and J. F. Jamie. 2016. Phytochemical profile and antibacterial and antioxidant activities of medicinal plants used by aboriginal people of New South Wales, Australia. Evidence-Based Complementary and Alternative Medicine 2016: 4683059. DOI: https://doi.org/10.1155/2016/4683059 DOI: https://doi.org/10.1155/2016/4683059
  5. Al-Youssef, H. M. and W. H. B. Hassan. 2015. Antimicrobial and antioxidant activities of Parkinsonia aculeata and chemical composition of their essential oils. Merit Research Journal of Medicine and Medical Sciences 3(4): 147-157.
  6. Aranda-Souza, M. Â., R. M. de Souza, C. A. da Silva Júnior, L. C. N. da Silva, D. dos Santos Tavares, T. Pereira, M. V. Silva and M. T. dos Santos Correia. 2012. Antioxidant potential and total phenolic content of leaf extracts from Parkinsonia aculeata L. cultivated in Brazilian Caatinga biome. Current Topics in Phytochemistry 11: 95-101.
  7. Azmir, J., I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini and A. K. M. Omar. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117(4): 426-436. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014 DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014
  8. Benzie, I. F. F. and J. J. Strain. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76. DOI: https://doi.org/10.1006/abio.1996.0292 DOI: https://doi.org/10.1006/abio.1996.0292
  9. Borkar, S. D., A. R. Sawarkar, S. G. Jadhao and P. Thakare. 2016. Phytochemical analysis of aqueous and alcoholic extract of some medicinal plants. International Journal of Scientific Research and Management 4(09): 4578-4585. DOI: https://doi.org/10.18535/ijsrm/v4i9.17
  10. Block, K. I., C. Gyllenhaal, L. Lowe, A. Amedei, A. R. M. Ruhul Amin, A. Amin, K. Aquilano, J. Arbiser, A. Arreola, A. Arzumanyan, S. S. Ashraf, A. S. Azmi, F. Benencia, D. Bhakta, A. Bilsland, A. Bishayee, S. W. Blain, P. B. Block, C. S. Boosani, T. E. Carey, A. Carnero, M. Carotenuto, S. C. Casey, M. Chakrabarti, R. Chaturvedi, G. Z. Chen, H. Chen, S. Chen, Y. C. Chen, B. K. Choi, M. R. Ciriolo, H. M. Coley, A. R. Collins, M. Connell, S. Crawford, C. S. Curran, C. Dabrosin, G. Damia, S. Dasgupta, R. J. DeBerardinis, W. K. Decker, P. Dhawan, A. M. E. Diehl, D. Jin-Tang, Q. Ping Dou, J. E. Drew, E. Elkord, B. El-Rayes, M. A. Eitelson, D. W. Felsher, L. R. Ferguson, C. Fimognari, G. L. Firestone, C. Frezza, H. Fujii, M. M. Fuster, D. Generali, A. G. Georgakilas, F. Gieseler, M. Gilbertson, M. F. Green, B. Grue, G. Guha, D. Halicka, W. G. Helferich, P. Heneberg, P. Hentosh, M. D. Hirschey, L. J. Hofseth, R. F. Holcombe, K. Honoki, H. Hsue-Yin,G. S. Huang, L. D. Jensen, W. Jiang, L. W. Jones, P. A. Karpowicz, W. N. Keith, S. P. Kerkar, G. N. Khan, M. Khatami, Y. H. Ko, O. Kucuk, R. J. Kulathinal, N. B. Kumar, B. D. Kwon, A. Le, M. A. Lea, H. Y. Lee, T. Lichtor, L. Liang-Tzung, J. W. Locasale, B. L. Lokeshwar, V. D. Longo, C. A. Lyssiotis, K. L. MacKenzie, M. Malhotra, M. Marino, M. L. Martinez-Chantar, A. Matheu, C. Maxwell, E. McDonnell, A. K. Meeker, M. Mehrmohamadi, K. Mehta, G. A. Michelotti, R. M. Mohammad, S. I. Mohammed, D. J. Morre, V. Muralidhar, I. Muqbil, M. P. Murphy, G. P. Nagaraju, R. Nahta, E. Niccolai, S. Nowsheen, C. Panis, F. Pantano, V. R. Parslow, G. Pawelec, P. L. Pedersen, B. Poore, D. Poudyal, S. Prakash, M. Prince, L. Raffaghello, J. C. Rathmell, W. K. Rathmell, S. K. Ray, J. Reichrath, S. Rezazadeh, D. Ribatti, L. Ricciardiello, R. Brooks Robey, F. Rodier, H. P. Vasantha Rupasinghe, G. Luigi Russo, E. P. Ryan, A. K. Samadi, I. Sanchez-Garcia, A. J. Sanders, D. Santini, M. Sarkar, T. Sasada, N. K. Saxena, R. E. Shackelford, H. M. C. Shantha Kumara, D. Sharma, D. M. Shin, D. Sidransky, M. D. Siegelin, E. Signori, N. Singh, S. Sivanand, D. Sliva, C. Smythe, C. Spagnuolo, D. M. Stafforini, J. Stagg, P. R. Subbarayan, T. Sundin, W. H. Talib, S. K. Thompson, P. T. Tran, H. Ungefroren, M. G. Vander Heiden, V. Venkateswaran, D. S. Vinay, P. J. Vlachostergios, Z. Wang, K. E. Wellen, R. L. Whelan, E. S. Yang, H. Yang, X. Yang, P. Yaswen, C. Yedjou, X. Yin, J. Zhu and M. Zollo. 2015. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology 35: S276-S304. DOI: https://doi.org/10.1016/j.semcancer.2015.09.007 DOI: https://doi.org/10.1016/j.semcancer.2015.09.007
  11. Burke, R. W, B. I. Diamondstone, R. A. Velapoldi and O Menis. 1974. Mechanisms of the Liebermann-Burchard and Zak color reactions for cholesterol. Clinical Chemistry 20(7): 794-801. DOI: https://doi.org/10.1093/clinchem/20.7.794 DOI: https://doi.org/10.1093/clinchem/20.7.794
  12. Collin, F. 2019. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. International Journal of Molecular Sciences 20(10): 2407. DOI: https://doi.org/10.3390/ijms20102407 DOI: https://doi.org/10.3390/ijms20102407
  13. Cheng-Yong, F., L. Shan-Shan, Y. Dan-Dan, Z. Hui-Jin, T. Dai-Ke, W. Quian, W. Li-Jin, S. Shang and W. Liang-Sheng. 2016. Rapid determination of flavonoids in plumules of sacred lotus cultivars and assessment of their antioxidant activities. Industrial Crops and Products 87: 96-104. DOI: https://doi.org/10.1016/j.indcrop.2016.04.030
  14. DagerAlbalawi, M. A. 2016. Chemistry, spectroscopic characteristics and biological activity of natural ocurring cardiac glycosides. Journal of Biotechnology and Biochemistry 2(6): 20-35.
  15. Fidrianny, I., T. Aristya and R. Hartati. 2015. Antioxidant capacities of various leaves extracts from three species of legumes and correlation with total flavonoid, phenolic, carotenoid content. International Journal of Pharmacognosy and Phytochemical Research 7: 628-634.
  16. Gollo, A. L., V. O. Tanobe, G. V. de Melo Pereira, O. Marin, S. J. Riberiro Bonatto, S. Silva, I. R. de Barros and C. R. Soccol. 2020. Phytochemical analysis and biological activities of in vitro cultured Nidularium procerum, a bromeliad vulnerable to extinction. Scientific Reports 10(1): 7008. DOI: https://doi.org/10.1038/s41598-020-64026-z DOI: https://doi.org/10.1038/s41598-020-64026-z
  17. Gonzalez-Burgos, E. and M. Gómez-Serranillos. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Current Medicinal Chemistry 19(31): 5319-5341. DOI: https://doi.org/10.2174/092986712803833335 DOI: https://doi.org/10.2174/092986712803833335
  18. Grever, M. R., S. A. Schepartz and B. A. Chabner. 1992. The National Cancer Institute: cancer drug discovery and development program. Seminars in Oncology 19: 622-38.
  19. Gul, M. Z., S. Chandrasekaran, M. K, M. Y. Bhat, R. Maurya, I. A. Qureshi and I. A. Ghazi. 2016. Bioassay-guided fractionation and in vitro antiproliferative effects of fractions of Artemisia nilagirica on THP-1 cell line. Nutrition and Cancer 68(7): 1210-1224. DOI: https://doi.org/10.1080/01635581.2016.1205900 DOI: https://doi.org/10.1080/01635581.2016.1205900
  20. Hernandez, J., F. M. Goycoolea, J. Quintero, A. Acosta, M. Castañeda, Z. Dominguez, R. Robles, L. Vazquez-Moreno, E. F. Velazquez, H. Astiazaran, E. Lugo and C. Velazquez. 2007. Sonoran propolis: chemical composition and antiproliferative activity on cancer cell lines. Planta Medica 73(14): 1469-1474. DOI: https://doi.org/10.1055/s-2007-990244 DOI: https://doi.org/10.1055/s-2007-990244
  21. Huang, M., J.-J. Lu, M.-Q. Huang, J.-L. Bao, X.-P. Chen and Y.-T. Wang. 2012. Terpenoids: natural products for cancer therapy. Expert Opinion on Investigational Drugs 21(12): 1801-1818. DOI: https://doi.org/10.1517/13543784.2012.727395 DOI: https://doi.org/10.1517/13543784.2012.727395
  22. Jing, P., S.-J. Zhao, W.-J. Jian, B.-J. Qian, Y. Dong and J. Pang. 2012. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules 17(11): 12910-12924. DOI: https://doi.org/10.3390/molecules171112910 DOI: https://doi.org/10.3390/molecules171112910
  23. Kumkhale, R., V. Nimkar, D. Sumbre and A. Deshpande. 2020. Tephrosia purpurea (Sarphonka): phytochemical analysis, quantitative estimation and medicinal significance-An Overview. Curren Trends in Pharmacy and Pharmaceutical Chemistry 2(4): 56-70.
  24. Labrada-Aranda, G. I. 2005. Propagación in vitro de Parkinsonia praecox (Ruiz & Pavón) Hawkins (Caesalpiniaceae) del Valle de Zapotitlán Salinas, Puebla. Tesis de licenciatura. Facultad de Estudios Superiores IZTACALA Universidad Nacional Autónoma de México. Iztacala, Mexico. 1-59 pp.
  25. Le, A. V., S. E. Parks, M. H. Nguye and P. D. Roach. 2018. Improving the vanillin-sulphuric acid method for quantifying total saponins. Technologies 6(84): 1-12. DOI: https://doi.org/10.3390/technologies6030084
  26. Leite, A. C. R., T. Gomes Araújo, B. de Melo Carvalho, M. B. Sousa Maia and V. L. de Menezes Lima. 2010. Characterization of the antidiabetic role of Parkinsonia aculeata (Caesalpineaceae). Evidence-Based Complementary and Alternative Medicine 2011: 692378. DOI: https://doi.org/10.1155/2011/692378 DOI: https://doi.org/10.1155/2011/692378
  27. López-Millán, A., C. L. Del Toro-Sánchez, J. R. Ramos-Enríquez, R. C. Carrillo-Torres, P. Zavala-Rivera, R. Esquivel, E. Álvarez-Ramos, R. Moreno-Corral, R. Guzmán-Zamudio and A. Lucero-Acuña. 2019. Biosynthesis of gold and silver nanoparticles using Parkinsonia florida leaf extract and antimicrobial activity of silver nanoparticles. Chemical and Environmental Engineering 6(9): 095025. DOI: https://doi.org/10.1088/2053-1591/ab2d8e DOI: https://doi.org/10.1088/2053-1591/ab2d8e
  28. Maya-Cano, D. A., S. Arango-Varela and G. A. Santa-Gonzalez. 2021. Phenolic compounds of blueberries (Vaccinium spp) as a protective strategy against skin cell damage induced by ROS: A review of antioxidant potential and antiproliferative capacity. Heliyon 7(2): e06297. DOI: https://doi.org/10.1016/j.heliyon.2021.e06297 DOI: https://doi.org/10.1016/j.heliyon.2021.e06297
  29. Muddathir, A., K. Yamauchi, I. Batubara, E. A. M. Mohieldin and T. Mitsunaga. 2017. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany 109: 9-15. DOI: https://doi.org/10.1016/j.sajb.2016.12.013 DOI: https://doi.org/10.1016/j.sajb.2016.12.013
  30. Musman, M., P. Widayanti and E. Erlidawati. 2020. Antioxidant and anti-termite activities of ethanol extract of Cibotium barometz (L.) J. Sm. Journal of Physics, Conference series 1460: 012081. DOI: https://doi.org/10.1088/1742-6596/1460/1/012081 DOI: https://doi.org/10.1088/1742-6596/1460/1/012081
  31. NCSS Statical Software. 2021. Data Analysis & Graphics, v. 2007. Kaysville, Utah, USA. https://www.ncss.com/software/ (consulted July, 2021).
  32. Newman, D. J. and G. M. Cragg. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products 83(3): 770-803. DOI: https://doi.org/10.1021/acs.jnatprod.9b01285 DOI: https://doi.org/10.1021/acs.jnatprod.9b01285
  33. Ochoa-Velasco, C. E., R. Avila-Sosa, A. R. Navarro-Cruz, A. López-Malo and E. Palou. 2017. Biotic and abiotic factors to increase bioactive compounds in fruits and vegetables. In: Mihai Grumezescu, A. and A. M. Holban (eds.). Food Bioconversion. Academic Press. Oxford, UK. Pp. 317-349. DOI: https://doi.org/10.1016/B978-0-12-811413-1.00009-7 DOI: https://doi.org/10.1016/B978-0-12-811413-1.00009-7
  34. Oladele, J. O., B. D. Olowookere, M. O. Bamigboye, O. M. Oyeleke, K. E. Alabi, O. O. Oladele and I. O. Oyewole. 2021. Chemical profiling, phytochemical constituents and in vitro antioxidant activities of ethanol leaf extract of Talinum triangulare. Current Research in Chemistry 13(1): 26-34. DOI: https://doi.org/10.3923/crc.2021.26.34 DOI: https://doi.org/10.3923/crc.2021.26.34
  35. Ou, B., M. Hampsch-Woodill and R. L. Prior. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49(10): 4619-4626. DOI: https://doi.org/10.1021/jf010586o DOI: https://doi.org/10.1021/jf010586o
  36. Qasim, M., Z. Abideen, M. Y. Adnan, S. Gulzar, B. Gul, M. Rasheed and M. A. Khan. 2017. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany 110: 240-250. DOI: https://doi.org/10.1016/j.sajb.2016.10.005 DOI: https://doi.org/10.1016/j.sajb.2016.10.005
  37. Qureshi, S. P. 2017. Antibacterial activity and phytochemical screening of crude leaves extract of Parkinsonia aculeata Linn. International Journal of Researches in Biosciences, Agriculture and Technology 2: 667-670.
  38. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10): 1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  39. Ribeiro, D., S. Maine de Morais, F. Tomiotto-Pellissier, M. Miranda-Sapla, F. Vasconcelos I. Goes da Silva, H. Araujo de Sausa, J. Assolini, I. Conchon-Costa, W. Pavanelli and F. Oliveira. 2017. Flavonoid composition and biological activities of etanol extracts of Caryocar cariaceum Wittm., a native plant from Caatinga Biome. Evidence-Based Complementary and Alternative Medicine 2017(special issue): 6834218. DOI: https://doi.org/10.1155/2017/6834218 DOI: https://doi.org/10.1155/2017/6834218
  40. Romão, M. V. V. and V. D. F. Mansano. 2021. Taxonomic review of the species of Parkinsonia (Leguminosae, Caesalpinioideae) from the Americas. Rodriguésia 72: 1-21. DOI: https://doi.org/10.1590/2175-7860202172119 DOI: https://doi.org/10.1590/2175-7860202172119
  41. Saha, D., D. Mridha, S. Mandal, B. Biswal and P. Das. 2010a. Anti inflammatory activity of the bark of Parkinsonia aculeata. Advances in Pharmacology and Toxicology 11(2): 111-114.
  42. Saha, D., S. Pahari, T. Maity and D. Sur. 2010b. Pharmacognostic studies of the bark of Parkinsonia aculeata. International Journal of Pharma Sciences and Research 1(11): 473-475.
  43. Sánchez-Escalante, J. 2007a. Los arboles del género Parkinsonia en Sonora, México. Parte 2. Botánica 7: 14-15.
  44. Sánchez-Escalante, J. 2007b. Plantas nativas de Sonora: las plantas del desierto sonorense. Revista Universidad de Sonora 19: 20-22.
  45. Shahwar, D., S. Ullah, M. A. Khan, N. Ahmad, A. Saeed and S. Ullah. 2015. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pakistab Journal of Pharmaceutical Science 28(3): 969-72.
  46. Sharifi-Rad, M., C. Lankatillake, D. A. Dias, A. O. Docea, M. F. Mahomoodally, D. Lobine, P. L. Chazot, B. Kurt, T. B. Tumer, A. C. Moreira, F. Sharopov, M. Martorell, N. Martins, W. C. Cho, D. Calina and J. Sharifi-Rad. 2020. Impact of natural compounds on neurodegenerative disorders: from preclinical to pharmacotherapeutics. Journal of Clinical Medicine 9(4): 1061. DOI: https://doi.org/10.3390/jcm9041061 DOI: https://doi.org/10.3390/jcm9041061
  47. Sharma, S. and A. P. Vig. 2013. Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. The Scientific World Journal 2013: 604865. DOI: https://doi.org/10.1155/2013/604865 DOI: https://doi.org/10.1155/2013/604865
  48. Sharma, S. and A. P. Vig. 2014. Preliminary phytochemical screening and in vitro antioxidant activities of Parkinsonia aculeata Linn. BioMed Research International 2014: 756184. DOI: https://doi.org/10.1155/2014/756184 DOI: https://doi.org/10.1155/2014/756184
  49. Sharma, S., S. Sharma and A. P. Vig. 2016. Evaluation of antimutagenic and protective effects of Parkinsonia aculeata L. leaves against H2O2 induced damage in pBR322 DNA. Physiology and Molecular Biology of Plants 22: 17-31. DOI: https://doi.org/10.1007/s12298-016-0346-2 DOI: https://doi.org/10.1007/s12298-016-0346-2
  50. Sharma, K. A., P. M. Dobhal and C. M. Sharma. 2017. In vitro antioxidant activity of selected medicinal plants reported in ancient ayurveda traditions. Current Traditional Medicine 3(3): 190-194. DOI: https://doi.org/10.2174/2215083803666170817114848 DOI: https://doi.org/10.2174/2215083803666170817114848
  51. Sharma, A., D. Kashyap, K. Sak, H. S. Tuli and A. K. Sharma. 2018. Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharmaceutical Patent Analyst 7(1): 15-32. DOI: https://doi.org/10.4155/ppa-2017-0030 DOI: https://doi.org/10.4155/ppa-2017-0030
  52. Singh, P., R. Shrivastava, M. Sharma and M. Singh. 2013. In vivo antitumor, antioxidant activities and toxicity profile of ethyl acetate crude leaf extract of Parkinsonia aculeata L. (Fabaceae) on B16F10 melonoma. International Research Journal of Pharmacy 4(10): 90-93. DOI: https://doi.org/10.7897/2230-8407.041020 DOI: https://doi.org/10.7897/2230-8407.041020
  53. Suurbaar, J., R. Mosobil and A. M. Donkor. 2017. Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Research Notes 10: 600. DOI: https://doi.org/10.1186/s13104-017-3001-2 DOI: https://doi.org/10.1186/s13104-017-3001-2
  54. Torrealba, D. 2008. Actividad biológica y detección de metabolitos secundarios de extractos hexánicos y metabólicos de la especie Parkinsonia praecox (Ruíz López & Pavón) Hawkins. Tesis. Universidad de Oriente. Cumaná, Venezuela.
  55. Torres-Moreno, H., C. A. Velázquez, A. Garibay-Escobar, M. Curini, M. C. Marcotullio and R. E. Robles-Zepeda. 2015. Antiproliferative and apoptosis induction of cucurbitacin-type triterpenes from Ibervillea sonorae. Industrial Crops and Products 77: 895-900. DOI: https://doi.org/10.1016/j.indcrop.2015.09.055 DOI: https://doi.org/10.1016/j.indcrop.2015.09.055
  56. Torres-Moreno, H., J. C. López-Romero, J. Vázquez-Solorio, C. Velázquez-Contreras, A. Garibay-Escobar, R. Díaz-López and R. Robles-Zepeda. 2019. Antioxidant, anti-inflammatory and antiproliferative properties of Ibervillea sonorae. South African Journal of Botany 125: 207-213. DOI: https://doi.org/10.1016/j.sajb.2019.07.029 DOI: https://doi.org/10.1016/j.sajb.2019.07.029
  57. Ulusoy, H. G. and N. Sanlier. 2020. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crtical Reviews in Food Sciences and Nutrition 60(19): 3290-3303. DOI: https://doi.org/10.1080/10408398.2019.1683810 DOI: https://doi.org/10.1080/10408398.2019.1683810
  58. Usia, T., A. H. Banskota, Y. Tezuka, K. Midorikawa, K. Matsushige and S. Kadota. 2002. Constituents of Chinese propolis and their antiproliferative activities. Journal of Natural Products 65(5): 673-676. DOI: https://doi.org/10.1021/np010486c DOI: https://doi.org/10.1021/np010486c
  59. Velazquez, C., M. Navarro, A. Acosta, A. Angulo, Z. Dominguez, R. Robles‐Zepeda, E. Lugo, F. Goycoolea, E. Velazquez, H. Astiazaran and J. Hernandez. 2007. Antibacterial and free‐radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology 103(5): 1747-1756. DOI: https://doi.org/10.1111/j.1365-2672.2007.03409.x DOI: https://doi.org/10.1111/j.1365-2672.2007.03409.x
  60. Velderrain-Rodríguez, G., H. Torres-Moreno, M. A. Villegas-Ochoa, J. F. Ayala-Zavala, R. E. Robles-Zepeda, A. Wall-Medrano and G. A. González-Aguilar. 2018. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 cells. Molecules 23(3): 695. DOI: https://doi.org/10.3390/molecules23030695 DOI: https://doi.org/10.3390/molecules23030695
  61. Vidal Gutiérrez, M., H. Torres Moreno, C. A. Velázquez Contreras, L. A. Rascón Valenzuela and R. E. Robles Zepeda. 2020. Actividad antioxidante y antiproliferativa de seis plantas medicinales del noroeste de México. Biotecnia 22(3): 40-45. DOI: https://doi.org/10.18633/biotecnia.v22i3.1169 DOI: https://doi.org/10.18633/biotecnia.v22i3.1169
  62. von Müller, A. R., C. B. López, A. R. Eynard and C. A. Guzmán. 2009. Subchronic toxicological evaluation of brea gum (Parkinsonia preacox) as a food additive in BALB/c mice. Drug and Chemical Toxicology 32(4): 307-311. DOI: https://doi.org/10.1080/01480540902976903 DOI: https://doi.org/10.1080/01480540902976903
  63. Wang, P., D. Heber and S. M. Henning. 2012. Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutrition and Cancer 64(4): 580-587. DOI: https://doi.org/10.1080/01635581.2012.661514 DOI: https://doi.org/10.1080/01635581.2012.661514
  64. Wong, C. C., H. B. Li, K. W. Cheng and F. Chen. 2006. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry 97(4): 705-711. DOI: https://doi.org/10.1016/j.foodchem.2005.05.049 DOI: https://doi.org/10.1016/j.foodchem.2005.05.049
  65. Wright, C. W. 2001. Artemisia. CRC Press. London, UK. 344 pp. DOI: https://doi.org/10.1201/9780203303061 DOI: https://doi.org/10.4324/9780203303061
  66. Wutsqa, Y., A. S. Suratman and S. L. A. Sari. 2021. Detection of terpenoids and steoids in Lindsaea obtusa with thin layer chromatography. Asian Journal of Natural Product Biochemistry 19(2): 66-69. DOI: https://doi.org/10.13057/biofar/f190204 DOI: https://doi.org/10.13057/biofar/f190204
  67. Xiong, Q., W. Wilson and J. Pang. 2007. The Liebermann-Burchard reaction: sulfonation, desaturation, and rearrangment of colesterol in acid. Lipids 42(1): 87-96. DOI: https://doi.org/10.1007/s11745-006-3013-5 DOI: https://doi.org/10.1007/s11745-006-3013-5
  68. Zhang, L., J. Song, L. Kong, T. Yuan, W. Li, W. Zhang, B. Hou, Y. Lu and G. Du. 2020. The strategies and techniques of drug discovery from natural products. Pharmacology & Therapeutics 216: 107686. DOI: https://doi.org/10.1016/j.pharmthera.2020.107686 DOI: https://doi.org/10.1016/j.pharmthera.2020.107686
  69. Zhong, L., Y. Li, L. Xiong, W. Wang, M. Wu, T. Yuan, W. Yang, C. Tian, Z. Miao, T. Wang and S. Yang. 2021. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Therapy 6: 201. DOI: https://doi.org/10.1038/s41392-021-00572-w DOI: https://doi.org/10.1038/s41392-021-00572-w