2-feniletanol en las hojas de Bursera velutina Bullock (Burseraceae)

Autores/as

  • Koji Noge University of Arizona
  • D. Lawrence Venable University of Arizona
  • Judith X. Becerra University of Arizona

DOI:

https://doi.org/10.21829/abm97.2011.245

Palabras clave:

Burseraceae, Bursera velutina, 2-feniletanol, México, terpenos

Resumen

Se identificaron los compuestos químicos volátiles presentes en las hojas de Bursera velutina usando cromatografía de gases y espectrometría de masas. El compuesto de mayor abundancia fue 2-feniletanol (29.5%). Esta es la primera vez que se reporta la presencia de esta substancia en las hojas de plantas del género Bursera. Además de este compuesto aromático, B. velutina produce monoterpenos, sesquiterpenos, diterpenos y alcanos, lo que la convierte en una de las especies de mayor complejidad química en el género. Esta combinación diversa y distinta de compuestos podría jugar un papel importante en la defensa contra sus herbívoros.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Koji Noge,

University of Arizona

Department of Entomology

D. Lawrence Venable,

University of Arizona

Department of Ecology and Evolutionary Biology

Judith X. Becerra,

University of Arizona

Department of Biosphere 2

Citas

Al-Harrasi, A. & S. Al-Saidi. 2008. Phytochemical analysis of the essential oil from botanically certified oleogum resin of Boswellia sacra (Omani Luban). Molecules 13: 2181-2189. DOI: https://doi.org/10.3390/molecules13092181

Becerra, J. X. 1993. Adaptations to ecological interactions. PhD thesis. University of Arizona. Tucson. pp. 1-125.

Becerra, J. X. 1994. Squirt-gun defense in Bursera and the Chrysomelid counterploy. Ecology 75: 1991-1996. DOI: https://doi.org/10.2307/1941603

Becerra, J. X. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276: 253-256. DOI: https://doi.org/10.1126/science.276.5310.253

Becerra, J. X. 2003. Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and 5S nuclear ribosomal DNA sequences. Mol. Phylogenet. Evol. 26: 300-309. DOI: https://doi.org/10.1016/S1055-7903(02)00256-7

Becerra, J. X. 2004. Molecular systematic of Blepharida beetles (Chrysomelidae: Alticinae) and relatives. Mol. Phylogenet. Evol. 30: 107-117. DOI: https://doi.org/10.1016/S1055-7903(03)00158-1

Becerra, J. X. 2007. The impact of herbivore-plant coevolution on plant community structure. Proc. Natl. Acad. Sci. 104: 7483-7488. DOI: https://doi.org/10.1073/pnas.0608253104

Becerra, J. X. & D. L. Venable. 1999. Nuclear ribosomal DNA phylogeny and its implications for evolutionary trends in Mexican Bursera (Burseraceae). Am. J. Bot. 86: 1047-1057. DOI: https://doi.org/10.2307/2656622

Becerra, J. X., D. L. Venable, P. H. Evans & W. S. Bowers. 2001. Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. Amer. Zool. 41: 865-876. DOI: https://doi.org/10.1093/icb/41.4.865

Berrah, G. & W. A. Konetzka. 1962. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J. Bacteriol. 83: 738-744. DOI: https://doi.org/10.1128/jb.83.4.738-744.1962

Davis, E. M. & R. Croteau. 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Chem. 209: 53-95. DOI: https://doi.org/10.1007/3-540-48146-X_2

Eriksson, C., P. E. Månsson, K. Sjödin & F. Schlyter. 2008. Antifeedants and feeding stimulants in bark extracts of ten woody non-host species of the pine weevil, Hylobius abietis. J. Chem. Ecol. 34: 1290-1297. DOI: https://doi.org/10.1007/s10886-008-9525-0

Evans, P. H. & J. X. Becerra. 2006. Non-terpenoid essential oils from Bursera chemapodicta. Flavour Fragr. J. 21: 616-618. DOI: https://doi.org/10.1002/ffj.1626

Evans, P. H., J. X. Becerra, D. L. Venable & W. S. Bowers. 2000. Chemical analysis of squirt-gun defense in Bursera and counterdefense by Chrysomelid beetles. J. Chem. Ecol. 26: 745-754.

Haynes, K. F., J. Z. Zhao & A. Latif. 1991. Identification of floral compounds from Abelia grandiflora that stimulate upwind flight in cabbage looper moths. J. Chem. Ecol. 17: 637-646. DOI: https://doi.org/10.1007/BF00982132

Honda, K., H. Ômura & N. Hayashi. 1998. Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage butterfly, Pieris rapae. J. Chem. Ecol. 24: 2167-2180. DOI: https://doi.org/10.1023/A:1020750029362

Imai, T., M. Maekawa, S. Tsuchiya & T. Fujimori. 1998. Field attraction of Hoplia communis to 2-phenylehtanol, a major volatile component from host flowers, Rosa spp. J. Chem. Ecol. 24: 1491-1497. DOI: https://doi.org/10.1023/A:1020907732706

Knudsen, J. T., L. Tollsten & L. G. Bergström. 1993. Floral scents - a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33: 253-280. DOI: https://doi.org/10.1016/0031-9422(93)85502-I

Lester, G. 1965. Inhibition of growth, synthesis, and permeability in Neurospora crassa by phenethyl alcohol. J. Bacteriol. 90: 29-37. DOI: https://doi.org/10.1128/jb.90.1.29-37.1965

Noge, K. & J. X. Becerra. 2009. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules 14: 5289-5297. DOI: https://doi.org/10.3390/molecules14125289

Noge, K., N. Shimizu & J. X. Becerra. 2010. (R)-(–)-Linalyl acetate and (S)-(–)-germacrene D from the leaves of Mexican Bursera linanoe. Nat. Prod. Commun. 5: 351-354. DOI: https://doi.org/10.1177/1934578X1000500301

Rodman, J. E. & F. S. Chew. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. Biochem. Syst. Ecol. 8: 43-50. DOI: https://doi.org/10.1016/0305-1978(80)90024-1

Rzedowski, J. & H. Kruse. 1979. Algunas tendencias evolutivas en Bursera (Burseraceae). Taxon 28: 103-116. DOI: https://doi.org/10.2307/1219565

Silver, S. & L. Wendt. 1967. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J. Bacteriol. 93: 560-566. DOI: https://doi.org/10.1128/jb.93.2.560-566.1967

Slepecky, R. A. 1963. Inhibition of sporulation and germination of Bacillus magaterium by phenethyl alcohol. Biochem. Biophys. Res. Commun. 12: 369-373. DOI: https://doi.org/10.1016/0006-291X(63)90107-4

Terenzi, H. F. & R. Storck. 1969. Stimulation of fermentation and yeast-like morphogenesis in Mucor rouxii by phenethyl alcohol. J. Bacteriol. 97: 1248-1261. DOI: https://doi.org/10.1128/jb.97.3.1248-1261.1969

Tieman, D., M. Taylor, N. Schauer, A. R. Fernie, A. D. Hanson & H. J. Klee. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. 103: 8287-8292. DOI: https://doi.org/10.1073/pnas.0602469103

Watanabe, S., K. Hayashi, K. Yagi, T. Asai, H. MacTavish, J. Picone, C. Turnbull & N. Watanabe. 2002. Biogenesis of 2-phenylethanol in rose flowers: Incorporation of [2H8]L-phenylalanine into 2-phenylethanol and its β-D-glucopyranoside during the flower opening of Rosa ‘Hoh-Jun’ and Rosa damascena Mill. Biosci. Biotechnol. Biochem. 66: 943-947. DOI: https://doi.org/10.1271/bbb.66.943

Yukawa, C., Y. Imayoshi, H. Iwabuchi, S. Komemushi & A. Sawabe. 2006. Chemical composition of three extracts of Bursera graveolens. Flavour Fragr. J. 21: 234-238. DOI: https://doi.org/10.1002/ffj.1563

Zhu, J., J. J. Obrycki, S. A. Ochieng, T. C. Baker, J. A. Pickett & D. Smiley. 2005. Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92: 277-281. DOI: https://doi.org/10.1007/s00114-005-0624-2

Zúñiga, B., P. Guevara-Fefer, J. Herrera, J. L. Contreras, L. Velasco, F. J. Pérez & B. Esquivel. 2005. Chemical composition and anti-inflammatory activity of the volatile fractions from the bark of eight Mexican Bursera species. Planta Med. 71: 825-828. DOI: https://doi.org/10.1055/s-2005-871293

Descargas

Publicado

2011-10-01

Cómo citar

Noge, K., Venable, D. L., & Becerra, J. X. (2011). 2-feniletanol en las hojas de Bursera velutina Bullock (Burseraceae). Acta Botanica Mexicana, (97), 9–16. https://doi.org/10.21829/abm97.2011.245
Metrics
Vistas/Descargas
  • Resumen
    735
  • PDF
    253
  • HTML
    215

Número

Sección

Artículo de investigación

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.