Transporte de iones en vacuolas de plantas superiores en el contexto celular

Autores/as

  • Igor I. Pottosin Universidad de Colima, Centro Universitario de Investigaciones Biomédicas
  • Jesús Muñiz Universidad de Colima, Centro Universitario de Investigaciones Biomédicas

DOI:

https://doi.org/10.21829/abm60.2002.902

Palabras clave:

vacuola, transporte y homeostasis iónica, transducción de las señales, canales iónicos, patch-clamp, calcio intracelular, poliaminas

Resumen

La vacuola ocupa hasta 95% del volumen celular en las plantas superiores, es un reservorio de solutos y un organelo clave en el control de la concentración de Ca2+ y del pH intracelulares. El papel de la vacuola en la homeostasis iónica celular es también evidente en condiciones ambientales de falta de potasio y estrés salino. La vacuola central está involucrada en la regulación de la turgencia y el volumen celular en células especializadas como las estomáticas, constituyendo el principal componente del motor osmótico celular. Desde hace más de una década, la célula estomática ha ganado un status de modelo celular en plantas superiores, siendo extensamente estudiada mediante técnicas fisiológicas y de biología molecular y celular. A pesar del gran avance en el conocimiento de la transducción de señales en la membrana plasmática, el entendimiento de los mecanismos implicados en el transporte iónico en la membrana vacuolar continúa siendo un gran reto. Al igual que en la membrana plasmática, el transporte iónico en la membrana vacuolar o del tonoplasto, está dirigido y coordinado a través de un complejo sistema integrado por proteínas de transporte que incluye bombas (H+-ATPasa, pirofosfatasa, bomba de Ca2+), transportadores (antiportadores Na+/H+ y Ca2+/H+) y varios canales iónicos. En años recientes, con la aplicación de las técnicas modernas de electrofisiología (patch clamp), numerosos canales iónicos han sido caracterizados funcionalmente, aunque ninguno de ellos ha sido estructuralmente identificado. El trabajo de nuestro grupo se ha enfocado a la caracterización de los canales iónicos vacuolares lentos (SV) y los canales iónicos vacuolares rápidos (FV); estos canales tienen una amplia, si no es que ubicua, distribución en plantas superiores, se les encuentra en células troncales, en células diferenciadas de las hojas o de los tejidos de almacenamiento de las raíces. En este trabajo se discuten las características funcionales de estos canales en cuanto a selectividad iónica, mecanismos de compuerta dependientes de voltaje e influencia de cationes de importancia fisiológica (calcio, magnesio, protones, poliaminas), así como su posible papel fisiológico. Asimismo, se plantean los principales temas que están por resolverse. Particularmente, se analiza la participación de los canales aniónicos en la función de la vacuola como motor osmótico. Se sabe que el tonoplasto presenta una gran permeabilidad para varios aniones, sin embargo, los canales iónicos involucrados no han sido claramente identificados. El otro problema es la identificación de los canales activados por ligandos intracelulares. A pesar de que las células vegetales poseen receptores intracelulares para inositol 1,4,5 trifosfato (IP3) y adenosinadifosfatoribosa cíclica (cADPR), su ubicación celular no está definida. Por el momento no son confiables las evidencias que indican la existencia de canales iónicos vacuolares activados por estos factores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams, P., J. C. Thomas, D. M. Vernon, H. J. Bohnert y R.G. Jensen. 1992. Distinct cellular and organismic responses to salt. Plant Cell Physiol. 33: 1215-1223.

Alexandre, J., J. P. Lassalles y R.T. Kado. 1990. Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate. Nature 343: 567-569. DOI: https://doi.org/10.1038/343567a0

Allan, A. C., M. D. Fricker, J. L. Ward, M. H. Beale y A. J. Trewavas. 1994. Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6: 1319-1328. DOI: https://doi.org/10.1105/tpc.6.9.1319

Allen, G. J. y D. Sanders. 1994a. Osmotic stress enhances the competence of Beta vulgaris vacuoles to respond to inositol 1,4,5-triphosphate. Plant J. 6: 687-695. DOI: https://doi.org/10.1046/j.1365-313X.1994.6050687.x

Allen, G. J. y D. Sanders. 1994b. Two voltage-gated, calcium release channels coreside in the vacuolar membrane of broad bean guard cells. Plant Cell 6: 685-694. DOI: https://doi.org/10.1105/tpc.6.5.685

Allen, G. J. y D. Sanders. 1995. Calcineurin, a type 2B protein phosphotase, modulates the Ca2+- permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7: 1473-1483. DOI: https://doi.org/10.1105/tpc.7.9.1473

Allen, G. J., S. R. Muir y D. Sanders. 1995. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268: 735-737. DOI: https://doi.org/10.1126/science.7732384

Allen, G. J. y D. Sanders. 1996. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J. 10: 1055-1069. DOI: https://doi.org/10.1046/j.1365-313X.1996.10061055.x

Allen, G. J. y D. Sanders. 1997. Vacuolar ion channels of higher plants. Adv. Bot. Res. 25: 218-252. DOI: https://doi.org/10.1016/S0065-2296(08)60154-8

Allen, G. J., A. Amtmann y D. Sanders. 1998a. Calcium-dependent and calcium independent K+ mobilization channels in Vicia faba guard cell vacuoles. J. Experim. Bot. 49: 305-318. DOI: https://doi.org/10.1093/jxb/49.Special_Issue.305

Allen, G. J., D. Sanders y D. Gradmann. 1998b. Calcium-potassium selectivity: kinetic analysis of current-voltage relationships of the open, slowly activating channel in the vacuolar membrane of Vicia faba guard-cells. Planta 204: 528-541. DOI: https://doi.org/10.1007/s004250050288

Amalou, Z., R. Gibrat, C. Brugidou, P. Trouslot y J. d’Auzac. 1992. Evidence of an amiloride-inhibited Mg2+/2H+ antiporter in lutoid (vacuolar) vesicles from latex of Hevea brasilensis. Plant Physiol. 100: 255-260. DOI: https://doi.org/10.1104/pp.100.1.255

Amodeo, G., A. Escobar y E. Zeiger. 1994. A cationic channel in the guard cell tonoplast of Allium cepa. Plant Physiol. 105: 999-1006. DOI: https://doi.org/10.1104/pp.105.3.999

Amodeo, G, L. Talbott y E. Zeiger. 1996. Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol. 37: 575-579. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a028983

Apse, M. P., G. S. Aarón, W. A. Snedden y E. Blumwald. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258. DOI: https://doi.org/10.1126/science.285.5431.1256

Assmann, S. M. y K-i. Shimazaki. 1999. The multisensory guard cell. Stomatal response to blue light and abscisic acid. Plant Physiol. 119: 809-815. DOI: https://doi.org/10.1104/pp.119.3.809

Aurisano, N., A. Bertani, M. Mattana y R. Reggiani. 1993. Abscisic acid induced stress-like polyamine pattern in wheat seedlings, and its reversal by potassium ions. Physiol. Plant. 89: 687-692. DOI: https://doi.org/10.1034/j.1399-3054.1993.890403.x

Aziz, A. y F. Lahrer. 1995. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci. 112: 175-186. DOI: https://doi.org/10.1016/0168-9452(95)04264-4

Bajaj, S. y M. V. Rajam. 1996. Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice. Restoration of plant regeneration by manipulation of cellular polyamine levels. Plant Physiol. 112: 1343-1348. DOI: https://doi.org/10.1104/pp.112.3.1343

Barbier-Brygoo, H., M. Vinauger, J. Colcombet, G. Ephritikhine, J-M. Frnachisse y C. Maurel. 2000. Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 1465: 199-218. DOI: https://doi.org/10.1016/S0005-2736(00)00139-5

Barkla, B. J., J. H. M. Charuk, E. J. Cragoe y E. Blumwald. 1990. Photolabeling of tonoplast from sugar beet cell suspensions by [3

H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport. Plant Physiol. 93: 924-930.

Barkla, B. J., L. Zingarelli, E. Blumwald y J. A. C. Smith. 1995. Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol. 109: 549-556. DOI: https://doi.org/10.1104/pp.109.2.549

Barkla, B. J. y O. Pantoja. 1996. Physiology of ion transport across the tonoplast of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 159-184. DOI: https://doi.org/10.1146/annurev.arplant.47.1.159

Beerling, D., J. McElwain y C. Osborne. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. To changes in atmospheric CO2 concentrations. J. Experim. Bot. 49: 1603-1607. DOI: https://doi.org/10.1093/jxb/49.326.1603

Bertl, A., E. Blumwald, R. Coronado et al. (1992). Electrical measurements on endomembranes. Science 258: 873-874. DOI: https://doi.org/10.1126/science.1439795

Bethke, P. C. y R. L. Jones. 1994. Ca2+-calmodulin modulates ion channel activity in storage protein vacuoles of barley aleurone cells. Plant Cell 6: 277-285. DOI: https://doi.org/10.1105/tpc.6.2.277

Bethke, P. C. y R. L. Jones. 1997. Reversible protein phosphorylation regulates the activity of the slow-vacuolar ion channel. Plant J. 11: 1227-1235. DOI: https://doi.org/10.1046/j.1365-313X.1997.11061227.x

Bethke, P. C. y R. L. Jones. 2000. Vacuoles and prevacuolar compartments. Curr. Opin. Plant Biol. 3: 469-475. DOI: https://doi.org/10.1016/S1369-5266(00)00115-1

Bethmann, B., M. Thaler, W. Simonis y G. Schönknecht. 1995. Electrochemical potential gradients of H+, K+, Ca2+, and Cl-

across the tonoplast of the green alga Eremosphaera viridis. Plant Physiol. 109: 1317-1316. DOI: https://doi.org/10.1104/pp.109.4.1317

Bewell, M. A., F. J. M. Maathhuis, G. J. Allen y D. Sanders. 1999. Calcium-induced calcium release mediated by a voltage-activated cation channel in vacuolar vesicles from red beet. FEBS Lett. 458: 41-44. DOI: https://doi.org/10.1016/S0014-5793(99)01109-6

Bielski, R. L. 1968. Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela. Plant Physiol. 43: 1309-1316. DOI: https://doi.org/10.1104/pp.43.8.1309

Blatt, M. R. 1987. Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent

‘electrogenic’ transport revealed by current-voltage and difference current-voltage analysis. J. Membr. Biol. 98: 257-274. DOI: https://doi.org/10.1007/BF01871188

Blatt, M. R. 2000. Cellular signalling and volume control in stomatal movements in plants. Annu. Rev. Cell. Dev. Biol. 16: 221-241. DOI: https://doi.org/10.1146/annurev.cellbio.16.1.221

Blatt, M. R., G. Thiel y D. R. Trentham. 1990. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346: 766-769. DOI: https://doi.org/10.1038/346766a0

Blom-Zandstra, M. y J. E. M. Lampe. 1985. The role of nitrate in osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J. Experim. Bot. 36: 1043-1052. DOI: https://doi.org/10.1093/jxb/36.7.1043

Blumwald, E. y A. Gelli. 1997. Secondary inorganic ion transport at the tonoplast. Adv. Bot. Res. 25: 401-417. DOI: https://doi.org/10.1016/S0065-2296(08)60159-7

Blumwald, E., G. S. Aharon y M. P. Apse. 2000. Sodium transport in plant cells. Biochim. Biophys. Acta 1465: 140-151. DOI: https://doi.org/10.1016/S0005-2736(00)00135-8

Brüggemann, L. I., I. I. Pottosin y G. Schönknecht. 1998. Cytoplasmic polyamines block the fastactivating vacuolar cation channel. Plant J. 16: 101-106. DOI: https://doi.org/10.1046/j.1365-313x.1998.00274.x

Brüggemann, L. I., I. I. Pottosin y G. Schönknecht. 1999a. Selectivity of the fast activating vacuolar cation channel. J. Experim. Bot. 50: 873-876. DOI: https://doi.org/10.1093/jxb/50.335.873

Brüggemann, L. I., I. I. Pottosin y G. Schönknecht. 1999b. Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J. Experim. Bot. 50: 1547-1552. DOI: https://doi.org/10.1093/jxb/50.339.1547

Carpaneto, A., A. M. Cantú, H. Busch y F. Gambale. 1997. Ion channels in the vacuoles of the seagrass Posidonia oceanica. FEBS Lett. 412: 236-240. DOI: https://doi.org/10.1016/S0014-5793(97)00786-2

Carpaneto, A., A. M. Cantú y F. Gambale. 1999. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 442: 129-132. DOI: https://doi.org/10.1016/S0014-5793(98)01642-1

Carpaneto, A., A. M. Cantú y F. Gambale. 2001. Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris. Planta 213: 457-468. DOI: https://doi.org/10.1007/s004250100519

Cerana, R., L. Giromini y R. Colombo. 1995. Malate-regulated channels permeable to anions in vacuoles of Arabidopsis thaliana. Austr. J. Plant Physiol. 22: 115-121. DOI: https://doi.org/10.1071/PP9950115

Chasan, R. y J. I. Schroeder. 1992. Excitation in plant membrane biology. Plant Cell 4: 1180-1188. DOI: https://doi.org/10.1105/tpc.4.10.1180

Cheffings, C. M., O. Pantoja, F. M. Aschroft y J. A. C. Smith. 1997. Malate transport and vacuolar ion channels in CAM plants. J. Experim. Bot. 48: 623-631. DOI: https://doi.org/10.1093/jxb/48.Special_Issue.623

Chini, E. N., K. W. Beers, C. C. S. Chini y T. P. Dousa. 1995. Specific modulation of cyclic ADPribose-induced Ca2+ release by polyamines. Am. J. Physiol. 269: C1042-C1047. DOI: https://doi.org/10.1152/ajpcell.1995.269.4.C1042

Cohen, S. S. 1998. A guide to the polyamines. Cap. 20. Plant Metabolism. Oxford University Press. New York. pp. 396-451.

Colombo, R., R. Cerana y N. Bagni. 1992. Evidence of polyamine channels in protoplasts and vacuoles of Arabidopsis thaliana cells. Biochem. Biophys. Res. Comm. 182: 1187-1192. DOI: https://doi.org/10.1016/0006-291X(92)91857-M

Crocomo, O. J. y L. C. Basso. 1974. Accumulation of putrescine and related amino acids in potassium deficient Sesamum. Phytochemistry 13: 2659-2665. DOI: https://doi.org/10.1016/0031-9422(74)80220-7

Davies, J. M. 1997. The bioenergetics of vacuolar H+ pumps. Adv. Bot. Res. 25: 339-363. DOI: https://doi.org/10.1016/S0065-2296(08)60157-3

Davies, J. M., I. Hunt y D. Sanders. 1994. Vacuolar H+-pumping ATPase variable transport coupling ratio controlled by pH. Proc. Natl. Acad. Sci. 91: 8457-8551. DOI: https://doi.org/10.1073/pnas.91.18.8547

De los Santos Briones, C., J. A. Muñoz-Sánchez, J. Chin-Vera, V. M. Loyola-Vargas y S. M. T. Hernández-Sotomayor. 1997. Phosphatydilinositol 4,5-biphosphate-phospholipase C activity during the growing phase of Catharanthus roesus transformed roots. J. Plant Physiol. 150: 707-713. DOI: https://doi.org/10.1016/S0176-1617(97)80287-8

Dietz, K-J., M. Schramm, B. Lang, A. Lanzl-Schramm, C. Dürr y E. Martinoia. 1992. Characterization of the epidermis from barley primary leaves. II. The role of the epidermis in ion compartmentation. Planta 187: 431-437. DOI: https://doi.org/10.1007/BF00199960

Dobrovinskaya, O. R., J. Muñiz e I. I. Pottosin. 1999a. Inhibition of vacuolar ion channels by polyamines. J. Membr. Biol. 167: 127-140. DOI: https://doi.org/10.1007/s002329900477

Dobrovinskaya, O. R., J. Muñiz e I. I. Pottosin. 1999b. Asymmetric block of the plant vacuolar Ca2+- permeable channel by organic cations. Eur. Biophys. J. 28: 552-563. DOI: https://doi.org/10.1007/s002490050237

Drozdowicz, Y. M., y P. A. Rea. 2001. Vacuolar H+ pyrophosphatase: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6: 206-211. DOI: https://doi.org/10.1016/S1360-1385(01)01923-9

Edwards, D., H. Kerp y H. Hass. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. J. Experim. Bot. 49: 255-278. DOI: https://doi.org/10.1093/jxb/49.Special_Issue.255

Ehrlich, B. E., E. Kaftan, S. Besprozvannaya y I. Besprozvanny. 1994. The pharmacology of intracellular Ca2+-release channels. Trends Pharm. Sci. 151: 145-149. DOI: https://doi.org/10.1016/0165-6147(94)90074-4

Erdei, P. T., S. Trivedi, K. Takeda y H. Matsumoto.1990. Effect of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat varieties different in salt and drought tolerance. J. Plant Physiol. 137: 165-168. DOI: https://doi.org/10.1016/S0176-1617(11)80075-1

Erdei, P. T., Z. Szegletes, K. Barabas y A. Pestenacz. 1996. Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J. Plant Physiol. 147: 599-603. DOI: https://doi.org/10.1016/S0176-1617(96)80052-6

Evans, H. J. y G. J. Sorger. 1966. Role of mineral elements with emphasis on univalent cations. Annu. Rev. Plant Physiol. 17: 47-76. DOI: https://doi.org/10.1146/annurev.pp.17.060166.000403

Evans, P. T. y R. L. Malmberg. 1989. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 235-269. DOI: https://doi.org/10.1146/annurev.pp.40.060189.001315

Fernando, M., J. Mehroke y A. D. M. Glass. 1992. De novo synthesis of plasma membrane and tonoplast polypeptides of barley roots during short-term K+ deprivation. Plant Physiol. 100: 1269-1276. DOI: https://doi.org/10.1104/pp.100.3.1269

Flores, H. E. 1991. Biochemistry and physiology of polyamines in plants. In: Slocum R. D. & Flores H. E. (eds.) CRC Press. Boca Raton, Fla. pp. 213-228.

Flores, H. E. y A. W. Galston. 1982. Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217: 1259-1261. DOI: https://doi.org/10.1126/science.217.4566.1259

Galston, A. W. y Sawney, R. K. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406-410. DOI: https://doi.org/10.1104/pp.94.2.406

Gambale, F., H. A. Kolb, A. M. Cantú y R. Hedrich. 1994. The voltage-dependent H+-ATPase of the sugar beet vacuole is reversible. Eur. Biophys. J. 22: 399-403. DOI: https://doi.org/10.1007/BF00180161

Geisler, M., N. Frangne, E. Gomes, E. Martinoia, M. Palmgren. 2000. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 124: 1814-1827. DOI: https://doi.org/10.1104/pp.124.4.1814

Gelli, A. y E. Blumwald. 1993. Calcium retrieval from vacuolar pools. Plant Physiol. 102: 1139-1146. DOI: https://doi.org/10.1104/pp.102.4.1139

Gordon-Weeks, R., V. D. Koren’kov, S. H. Steele y R. A. Leigh. 1997. Tris is a competitive inhibitor of K+ activation of the vacuolar H+- pumping pyrophosphatase. Plant Physiol. 114: 901-905. DOI: https://doi.org/10.1104/pp.114.3.901

Grabov, A. y Blatt, M. R. 1997. Parallel control of inward rectifier K+ channels by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201: 84-95. DOI: https://doi.org/10.1007/BF01258684

Grabov, A. y Blatt, M. R. 1998. Co-ordination of signalling elements in guard cell ion channel control. J. Experim. Bot. 49: 351-360. DOI: https://doi.org/10.1093/jxb/49.Special_Issue.351

Grabov, A. y Blatt, M. R. 1999. A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119: 277-287. DOI: https://doi.org/10.1104/pp.119.1.277

Guse, A. H. 1999. Cyclic ADP-ribose: a novel Ca2+-mobilising second messenger. Cell. Signal. 11: 309-316. DOI: https://doi.org/10.1016/S0898-6568(99)00004-2

Hafter, U., M. Ishitani, J.-K. Zhu. 2000. The Arabidopisi SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. DOI: https://doi.org/10.1073/pnas.97.7.3735

Hamill, O. P., A. Marty, E. Neher, B. Sakmann y F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85-100. DOI: https://doi.org/10.1007/BF00656997

Hamilton, D. W. A, A. Hills, B. Köhler y M. R Blatt. 2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl. Acad. Sci. USA 97: 4967-4972. DOI: https://doi.org/10.1073/pnas.080068897

Hansen, U-P., M. Keunecke y R. Blunck. 1997. Gating and permeation models of plant channels. J. Experim. Bot. 48: 365-382. DOI: https://doi.org/10.1093/jxb/48.Special_Issue.365

Harper, J. 2001. Dissection calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. DOI: https://doi.org/10.1016/S1360-1385(01)02023-4

Hedrich, R., U. I. Fluegge y J. M. Fernandez. 1986. Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett. 204: 228-232. DOI: https://doi.org/10.1016/0014-5793(86)80817-1

Hedrich, R. y E. Neher. 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329: 833-835. DOI: https://doi.org/10.1038/329833a0

Hedrich, R. y A. Kurkdjian. 1988. Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors. EMBO J. 7: 3661-3666. DOI: https://doi.org/10.1002/j.1460-2075.1988.tb03247.x

Hedrich, R., H. Barbier-Brygoo, H. Felle, U. I. Fluegge, U. Luettge, F. J. M. Maathuis, S. Marx, H. B. A. Prins, K. Raschke, H. Schnabl, J. I. Schroeder, I. Struve, L. Taiz y P. Zeigler. 1988.

General mechanisms for solute transport across the tonoplast of plant vacuoles: A patchclamp survey of ion channels and proton pumps. Bot. Acta 101: 7-13. DOI: https://doi.org/10.1111/j.1438-8677.1988.tb00003.x

Hirschi, K. D. 1999. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113-2122. DOI: https://doi.org/10.1105/tpc.11.11.2113

Hirschi, K. D., V. D. Koren’kov, N.L. Wilganowski, G.J. Wagner. 2000. Expression of Arabidopsis CAX2 gene in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124: 125-133. DOI: https://doi.org/10.1104/pp.124.1.125

Hirschi, K. 2001. Vacuolar H+/Ca2+ transport: who’s directing the transport? Trends Plant Sci. 6: 100-104. DOI: https://doi.org/10.1016/S1360-1385(00)01863-X

Iwasaki, I., H. Arata, H. Kijima y M. Nishimura. 1992. Two types of channels involved in the malate ion transport across the tonoplast of a crassulacean acid metabolism plant. Plant Physiol. 98: 1494-1497. DOI: https://doi.org/10.1104/pp.98.4.1494

Johannes, E., J. M. Brosnan y D. Sanders. 1992. Parallel pathways for intracellular Ca2+ release from the vacuole of higher plants. Plant J. 2: 97-102. DOI: https://doi.org/10.1111/j.1365-313X.1992.00097.x

Johannes, E. y D. Sanders. 1995. Lumenal calcium modulates unitary conductance and gating of a plant vacuolar calcium release channel. J. Membr. Biol. 146: 211-224. DOI: https://doi.org/10.1007/BF00238010

Karley, A. J., R. A. Leigh y D. Sanders. 2000. Where do all ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci. 5: 465-470. DOI: https://doi.org/10.1016/S1360-1385(00)01758-1

Kästner, K. H. y H. Sze. 1987. Potential-dependent anion transport in tonoplast vesicles from oat roots. Plant Physiol., 83: 483-489. DOI: https://doi.org/10.1104/pp.83.3.483

Kim, M., P. Hepler, S-O. Eun, K. S. Ha y Y. Lee. 1995. Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol. 109: 1077-1084. DOI: https://doi.org/10.1104/pp.109.3.1077

Kinoshita, T., M. Nishimura y K. I. Shimazaki. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7: 1333-1342. DOI: https://doi.org/10.1105/tpc.7.8.1333

Kjellbom, P., C. Larsson, I. Johansson, M. Karlsson y U. Johanson. 1999. Aquaporins and water homeostasis in plants. Trends Plant Sci. 4: 308-314. DOI: https://doi.org/10.1016/S1360-1385(99)01438-7

Knight, H., A. J. Trewavas y M. R. Knight. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12: 1067-1078. DOI: https://doi.org/10.1046/j.1365-313X.1997.12051067.x

Krishnamurthy, R. y K. A. Bhagwat. 1989. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 91: 500-504. DOI: https://doi.org/10.1104/pp.91.2.500

Leckie, C. P., M. R. McAinsh, G. J. Allen, D Sanders y A. M. Hetherington. 1998a. Abscisic acidinduced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl Acad. Sci. USA 95: 15837-15842 DOI: https://doi.org/10.1073/pnas.95.26.15837

Leckie, C. P., M. R. McAinsh, L. Montgomery, A. J. Priestley, A. A. R. Webb y A. M. Hetherington. 1998b. Second messengers in guard cells. J. Experim. Bot. 49: 339-349. DOI: https://doi.org/10.1093/jxb/49.Special_Issue.339

Lee, R. B., R. G. Ratcliffe, T. E. Southon. 1990. 31P NMR measurements of the cytoplasmic and vacuolar Pi content of mature maize roots: relationships with phosphorus status and phosphate fluxes. J. Experim. Bot. 41: 1063-1078. DOI: https://doi.org/10.1093/jxb/41.9.1063

Leigh, R. A. 1997. Solute composition of vacuoles. Adv. Bot. Res. 25: 171-194. DOI: https://doi.org/10.1016/S0065-2296(08)60152-4

Leigh, R. A. y R. G. Wyn Jones. 1984. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 97: 1-13. DOI: https://doi.org/10.1111/j.1469-8137.1984.tb04103.x

Lin, P. P. C. 1984. Polyamine anabolism in germinating Glycine max (L.) seeds. Dynamics of cadaverine and putrescine formation in the embryonic axis. Plant Physiol. 76: 372-380. DOI: https://doi.org/10.1104/pp.76.2.372

Liu, K., H. Fu, Q. Bei y S. Luan. 2000. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124: 1315-1325. DOI: https://doi.org/10.1104/pp.124.3.1315

Lommel, C., H.H. Felle. 1997. Transport of Ca2+ across the tonoplast of intact vacuoles from Chenopodium album L. suspension cells: ATP-dependent import and inositol-1,4,5- triphosphate-induced release. Planta 201: 477-486. DOI: https://doi.org/10.1007/s004250050092

Löv, R. y T. Rausch. 1996. In suspension-cultured Daucus carota cells salt stress stimulates H+- transport but not ATP hydrolysis of the V-ATPase. J. Experim. Bot. 47: 1725-1732. DOI: https://doi.org/10.1093/jxb/47.11.1725

Luan, S. 1998. Protein phosphatases and signaling cascades in higher plants. Trends Plant Sci. 3: 271-275. DOI: https://doi.org/10.1016/S1360-1385(98)01258-8

Lüttge, U. y R. Ratacjzak. 1997. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. Adv. Bot. Res. 25: 253-295. DOI: https://doi.org/10.1016/S0065-2296(08)60155-X

MacRobbie, E. A. C. 1998. Signal transduction and ion channels in guard cells. Phil. Trans. R. Soc. Lond. B 353: 1475-1488. DOI: https://doi.org/10.1098/rstb.1998.0303

Maeshima, M. 2000. Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta. 1465: 37-51. DOI: https://doi.org/10.1016/S0005-2736(00)00130-9

Maeshima, M. 2001. Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 469-497. DOI: https://doi.org/10.1146/annurev.arplant.52.1.469

Malmstrom, S., P. Askerlund y M. G. Palmgren. 1997. A calmodulin-stimulated Ca2+-ATPase from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 400: 324-328. DOI: https://doi.org/10.1016/S0014-5793(96)01448-2

Martinec, J, T. Feltl, C. H. Scanlon, P. J. Lumsden y I. Macháckova. 2000. Subcellular localization of a high affinity binding site for D-myo-inositol 1,4,5-triphosphate from Chenopodium rubrum. Plant Physiol. 124: 475-483. DOI: https://doi.org/10.1104/pp.124.1.475

Martinoia, E., M. J. Schramm, G. Kaiser, W. M. Kaiser y U. Heber. 1986. Transport of anions in isolated barley vacuoles. I. Permeability to anions and evidence for a Cl—uptake system. Plant Physiol. 80: 895-901. DOI: https://doi.org/10.1104/pp.80.4.895

Martinoia, E., A. Massonneau y N. Fragne. 2000. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41: 1175-1186. DOI: https://doi.org/10.1093/pcp/pcd059

Marty, F. 1999. Plant vacuoles. Plant Cell 11: 587-599. DOI: https://doi.org/10.1105/tpc.11.4.587

Mäser, P., S. Thomine, J. I. Schroeder y col. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126: 1646-1667. DOI: https://doi.org/10.1104/pp.126.4.1646

Masgrau, C., T. Altabella, R. Farras, D. Flores, A. J. Thompson, R. T. Besford y A. F. Tiburcio. 1997. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J. 11: 465-473. DOI: https://doi.org/10.1046/j.1365-313X.1997.11030465.x

Maurel, C., F. Tacnet, J. Güclü, J. Guern y P. Ripoche. 1997. Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc. Natl. Acad. Sci. USA 94: 7103-7108. DOI: https://doi.org/10.1073/pnas.94.13.7103

McAinsh, M. R., C. Brownlee y A. M. Hetherington. 1997. Calcium ions as second messengers in guard cell signal transduction. Physiol. Plant. 100: 16-29. DOI: https://doi.org/10.1111/j.1399-3054.1997.tb03451.x

Meyer, A. y M. Popp . 1997. Free Ca2+ in tissue saps of calciotrophic CAM plants as determined with Ca2+-selective electrodes. J. Experim. Bot. 48: 337-344. DOI: https://doi.org/10.1093/jxb/48.2.337

Muir, S. R. y D. Sanders. 1997. Inositol 1,4,5-triphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. Plant Physiol. 114: 1511-1521. DOI: https://doi.org/10.1104/pp.114.4.1511

Muir, S. R., M. A. Bewell, D. Sanders y G. Allen. 1997. Ligand-gated Ca2+ channels and Ca2+ signalling in higher plants. J. Experim. Bot. 48: 589-597. DOI: https://doi.org/10.1093/jxb/48.Special_Issue.589

Murty, K. S., T. A. Smith y C. Bould. 1971. The relation between putrescine content and potassium status of black currant leaves. Ann. Bot. 35: 687-695. DOI: https://doi.org/10.1093/oxfordjournals.aob.a084514

Pantoja, O., A. Gelli y E. Blumwald. 1992a. Voltage-dependent calcium channels in plant vacuoles. Science 255: 1567-1570. DOI: https://doi.org/10.1126/science.255.5051.1567

Pantoja, O., A. Gelli y E. Blumwald. 1992b. Characterization of vacuolar malate and K+ channels under physiological conditions. Plant Physiol. 100: 1137-1141. DOI: https://doi.org/10.1104/pp.100.3.1137

Pei, Z-M., J. M. Ward, J. F. Harper y J. I. Schroeder. 1996. A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine / threonine kinase, CDPK. EMBO J. 15: 6564-6574. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb01047.x

Pei, Z-M., J. I. Schroeder y M. Schwarz. 1998. Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. J. Experim. Bot. 49: 319-328. DOI: https://doi.org/10.1093/jxb/49.Special_Issue.319

Pei, Z-M., J. M. Ward y J. I. Schroeder. 1999. Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol. 121: 977-986. DOI: https://doi.org/10.1104/pp.121.3.977

Pei, Z-M., Y. Murata, G. Benning, S. Thomine, B. Klüsener, G. J. Allen, E. Grill y J. I. Schroeder. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734. DOI: https://doi.org/10.1038/35021067

Penny, M. G. y D. J. F Bowling. 1974. A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening. Planta 119: 17-25. DOI: https://doi.org/10.1007/BF00390818

Penny, M. G., L. S. Kelday y D. J. F. Bowling. 1976. Active chloride transport in the leaf epidermis of Commelina communis L. in relation to stomatal activity. Planta 130: 291-294. DOI: https://doi.org/10.1007/BF00387835

Pfeifer, W. y A. Hager. 1993. A Ca2+-ATPase and Mg2+/H+-antiporter are present on tonoplast membranes from roots of Zea mays L. Planta. 191: 377-385. DOI: https://doi.org/10.1007/BF00195696

Plant, P. J., A. Gelli y E. Blumwald. 1994. Vacuolar chloride regulation of an anion-selective tonoplast channel. J. Membr. Biol. 140: 1-12. DOI: https://doi.org/10.1007/BF00234481

Pottosin, I. I., L. I. Tikhonova, R. Hedrich y G. Schönknecht. 1997. Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release. Plant J. 12: 1387-1398. DOI: https://doi.org/10.1046/j.1365-313x.1997.12061387.x

Pottosin, I. I., M. Martínez-Estévez, O. R. Dobrovinskaya y J. Muñiz. 2003. Potassium-selective channel in the red beet vacuolar membrane. J. Experim. Bot. 54: (in press). DOI: https://doi.org/10.1093/jxb/erg067

Pottosin, I. I., O. R. Dobrovinskaya y J. Muñiz. 1999. Cooperative block of the plant endomembrane ion channel by ruthenium red. Biophys. J. 77: 1973-1979. DOI: https://doi.org/10.1016/S0006-3495(99)77038-4

Pottosin, I. I., O. R. Dobrovinskaya y J. Muñiz. 2000a. Ca2+-permeable channel of plant vacuoles sensing Ca2+ gradient. Biophys. J. 78: 312A.

Pottosin, I. I., O. R. Dobrovinskaya y J. Muñiz. 2000b. The slow vacuolar channel: permeability, block, and regulation by permeable cations. En: Primer Congreso de Responsables de Proyectos de Investigación en Ciencias Naturales, Veracruz 8-11 de octubre, http://www.conacyt.mx/daic/proyectos/congresos/naturales/pdf/29473-N.pdf.

Pottosin, I. I., O. R. Dobrovinskaya y J. Muñiz. 2001. Conduction of monovalent and divalent cations in the slow vacuolar channel. J. Membr. Biol. 181: 55-65. DOI: https://doi.org/10.1007/s0023200100073

Raschke, K. y R. Hedrich. 1989. Patch clamp measurements on isolated guard cell protoplasts and vacuoles. Methods Enzymol. 174: 312-329. DOI: https://doi.org/10.1016/0076-6879(89)74025-8

Ratajczak, R. 2000. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim. Biophys. Acta 1465: 17-36. DOI: https://doi.org/10.1016/S0005-2736(00)00129-2

Raven, J. A. 1997. The vacuole: a cost-benefit analysis. Adv. Bot. Res. 25: 59-86. DOI: https://doi.org/10.1016/S0065-2296(08)60148-2

Rea, P. A. y R. J. Poole. 1993. Vacuolar H+-translocating pyrophospatase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 157-180. DOI: https://doi.org/10.1146/annurev.pp.44.060193.001105

Reggiani, R., S. Zaina y A. Bertani. 1992. Plasmalemma ATPase in rice coleoptiles: stimulation by putrescine and polyamines. Photochemistry 31: 417-419. DOI: https://doi.org/10.1016/0031-9422(92)90009-F

Reggiani, R., N. Aurisano, M. Mattana y A. Bertani. 1993. Influence of K+ ions on polyamine level in wheat seedlings. J. Plant Physiol. 141: 136-140. DOI: https://doi.org/10.1016/S0176-1617(11)80749-2

Reggiani, R., S. Bozo y A. Bertani. 1994. Changes in polyamine metabolism in seedlings of three wheat (Triticum aestivum L.) cultivars differing in salt sensitivity. Plant Sci. 102: 121-126. DOI: https://doi.org/10.1016/0168-9452(94)90028-0

Reifarth, F. W., T. Weiser y F-W. Bentrup. 1994. Voltage- and Ca2+-dependence of the K+ channel in the vacuolar membrane of Chenopodium rubrum L. suspension cells. Biochim. Biophys. Acta 1192: 79-87. DOI: https://doi.org/10.1016/0005-2736(94)90145-7

Romani, A. M. y A. Scarpa. 2000. Regulation of cellular magnesium. Front. Biosci. 5: D720-D734. DOI: https://doi.org/10.2741/A546

Sanders, D., C. Brownlee y J. F. Harper. 1999. Communicating with calcium. Plant Cell 11: 691-706. DOI: https://doi.org/10.1105/tpc.11.4.691

Sarjala, T. 1996. Growth, potassium and polyamine concentrations of Scots pine seedlings in relation to potassium availability under controlled growth conditions. J. Plant Physiol. 147: 593-598 DOI: https://doi.org/10.1016/S0176-1617(96)80051-4

Sato, M. H., M. Kasahara, N. Ishii, H. Homareda, H. Matsui y M. Yoshida. 1994. Purified vacuolar inorganic pyrophosphatase constituting of a 75 kDa polypeptide can pump H+ into reconstituted proteoliposomes. J. Biol. Chem. 269: 6725-6728. DOI: https://doi.org/10.1016/S0021-9258(17)37435-5

Schönknecht, G., P. Spoormaker, R, Steinmeyer, L. Brüggemann, P. Ache, R. Dutta, B. Reintanz, M. Godde, R. Hedrich, K. Palme. 2002. KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett. 511: 28-32. DOI: https://doi.org/10.1016/S0014-5793(01)03273-2

Schroeder, J. I. y B. U. Keller. 1992. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc. Natl. Acad. Sci. USA 89: 5025-5029. DOI: https://doi.org/10.1073/pnas.89.11.5025

Schroeder, J. I., G. J. Allen, V. Hugouvieux, J. M. Kwak y D. Waner. 2001. Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 627-658. DOI: https://doi.org/10.1146/annurev.arplant.52.1.627

Schulz-Lessdorf, B. y R. Hedrich. 1995. Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment. Channel interaction with calmodulin inhibitors. Planta 197: 655-671. DOI: https://doi.org/10.1007/BF00191574

Schumacher, K., D. Vafeados, M. McCarthy, H. Sze, T. Wilkins y J. Chory. 1999. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Devel. 13: 3259-3270. DOI: https://doi.org/10.1101/gad.13.24.3259

Schwarz, M., A. Gross, T. Steinkamp, U. I. Flügge y R. Wagner. 1994. Ion channel properties of the reconstituted chloroplast triose phosphatae/phosphate translocator. J. Biol. Chem. 269: 29481-29489. DOI: https://doi.org/10.1016/S0021-9258(18)43905-1

Shaul, O., D. W. Hilgemann, J. de-Almeida-Engler, M. Van Montagu, D. Inze, G. Galili. 1999. Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J. 18: 3973-3980. DOI: https://doi.org/10.1093/emboj/18.14.3973

Shen, H. y A. W. Galston. 1985. Correlations between polyamine ratios and growth patterns in seedling roots. Plant Cell Regulation 3: 353-363. DOI: https://doi.org/10.1007/BF00117592

Shi, H., M. Ishitani, C. Kim y J-K . Zhu. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97: 6896-6901. DOI: https://doi.org/10.1073/pnas.120170197

Smith, F. A. y J. A. Raven. 1976. H+ transport and regulation of cell pH. In: Lüttge, U. y M. A. Pitman (eds.) Encyclopedia of Plant Physiology. Vol. 2A. Springer-Verlag. Berlin. pp. 317-346. DOI: https://doi.org/10.1007/978-3-642-66227-0_12

Smith, J. S., R. Coronado y G. Meissner. 1985. Sarcoplasmic reticulum contains adenine-nucleotideactivated calcium channels. Nature 316: 446-449. DOI: https://doi.org/10.1038/316446a0

Sung, H., L. Liu y C. H. Kao. 1994. Putrescine accumulation is associated with growth inhibition in suspension-cultured rice cells under potassium deficiency. Plant Cell Physiol. 35: 313-316.

Talbott, L. D. y E. Zeiger. 1996. Central roles of potassium and sucrose in guard cell osmoregulation. Plant Physiol. 111: 1051-1057. DOI: https://doi.org/10.1104/pp.111.4.1051

Thuleau, P., J. I. Schroeder y R. Ranjeva. 1998. Recent advances in the regulation of plant calcium channels: evidence for regulation by G-proteins, the cytoskeleton and second messengers. Curr. Opin. Plant Biol. 1: 424-427. DOI: https://doi.org/10.1016/S1369-5266(98)80267-7

Tiburcio, A. F., M. A. Masdeú, F. M. Dumortier y A. W. Galston. 1986a. Polyamine metabolism and osmotic stress. 1. Relation to protoplast viability. Plant Physiol. 82: 369-374. DOI: https://doi.org/10.1104/pp.82.2.369

Tiburcio, A. F., R. Kaur-Sawnhey y A. W. Galston. 1986b. Polyamine Metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol. 82: 375-378. DOI: https://doi.org/10.1104/pp.82.2.375

Tiburcio, A. F., R. T. Besford, R. T. Capell, A. Borrell, P. S. Testillano y M. C. Risueno. 1994. Mechanisms of polyamine action during senescence responses induced by osmotic stress. J. Experim. Bot. 45: 1789-1800. DOI: https://doi.org/10.1093/jxb/45.12.1789

Tikhonova, L. I., I. I. Pottosin, K-J. Dietz y G. Schönknecht. 1997. Fast activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J. 11: 1059-1070. DOI: https://doi.org/10.1046/j.1365-313X.1997.11051059.x

Trebacz, K. y G. Schönknecht. 2000. Simple method to isolate vacuoles and protoplasts for patchclamp experiments. Protoplasma 213: 39-45. DOI: https://doi.org/10.1007/BF01280503

Trewavas, A. J. y R. Malhó. 1997. Signal perception and transduction: the origin of the phenotype. Plant Cell 9: 1181-1195. DOI: https://doi.org/10.1105/tpc.9.7.1181

Uehara, A., M. Fill, P. Vélez, M. Yasukochi e I. Imanaga. 1996. Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines. Biophys. J. 71: 769-777. DOI: https://doi.org/10.1016/S0006-3495(96)79276-7

Van den Wijngaard, P. W. J., T. D. Bunney, I. Roobeek, G. Schönknecht y A. H. de Boer. 2001. Slow vacuolar channels from barley mesophyll cells are regulated by 14-3-3 proteins. FEBS Lett. 488: 100-104. DOI: https://doi.org/10.1016/S0014-5793(00)02394-2

Van der Leij, M, S. M. Smith y A. J. Miller. 1998. Remobilisation of vacuolar stored nitrate in barley root cells. Planta 205: 64-72. DOI: https://doi.org/10.1007/s004250050297

Walker, D. J., R. A. Leigh y A. J. Miller. 1996. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93: 10510-10514. DOI: https://doi.org/10.1073/pnas.93.19.10510

Ward, J. M. y J. I. Schroeder. 1994. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6: 669-683. DOI: https://doi.org/10.1105/tpc.6.5.669

Watson, M. B. y R. L. Malmberg. 1996. Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol. 111: 1077-1083. DOI: https://doi.org/10.1104/pp.111.4.1077

Weiser, T. y F.-W. Bentrup. 1993. Pharmacology of the SV channel in the vacuolar membrane of Chenopodium rubrum suspension cells. J. Membr. Biol. 136: 43-54. DOI: https://doi.org/10.1007/BF00241488

White, P. J. 2000. Calcium channels in higher plants. Biochim. Biophys. Acta 1465: 171-189. Wilmer, C. y M. Fricker. 1996. Stomata (2nd edition), Chapmann & Hall, London. Wu, Y., J. Kuzma, E. Maréchal, R. Graeff, H. C. Lee, R. Foster y N. H. Chua. 1998. Abscisic acid

signalling through cyclic ADP-ribose in plants. Science 278: 2126-2130. DOI: https://doi.org/10.1126/science.278.5346.2126

Yang, Z. 1998. Signalling tip growth in plants. Curr. Opin. Plant Biol. 1: 525-530. DOI: https://doi.org/10.1016/S1369-5266(98)80046-0

Yazaki, Y., N. Asukagawa, Y. Ishikawa, E. Ohta y M. Kata. 1988. Estimation of cytoplasmic free Mg2+ levels and phosphorylation potentials in mung bean root tips by in vivo 31P NMR spectroscopy. Plant Cell Physiol. 29: 919-924.

Zhen, R-G. y R. A. Leigh. 1990. Nitrate accumulation by wheat (Triticum aestivum) in relation to growth and tissue N concentrations. Plant Soil 124: 157-163. DOI: https://doi.org/10.1007/BF00009253

Descargas

Publicado

2002-07-01

Cómo citar

Pottosin, I. I., & Muñiz, J. (2002). Transporte de iones en vacuolas de plantas superiores en el contexto celular. Acta Botanica Mexicana, (60), 37–77. https://doi.org/10.21829/abm60.2002.902
Metrics
Vistas/Descargas
  • Resumen
    3182
  • PDF
    480

Número

Sección

Artículo de investigación

Métrica