Núm. 127 (2020)
Artículo de investigación

Una reevaluación de la taxonomía de Mappia (Icacinaceae) utilizando datos ambientales

Rodrigo Duno de Stefano
Centro de Investigación Científica de Yucatán, A.C. Mérida
Biografía
Israel Loera
DEPARTMENT OF ORGANISMIC & EVOLUTIONARY BIOLOGY, HARVARD UNIVERSITY
Biografía
Diego Francisco Angulo
DEPARTAMENTO DE BOTÁNICA, UNIVERSIDAD AUTÓNOMA DE YUCATÁN
Biografía

Publicado 2020-08-17

Palabras clave

  • Central America,
  • environmental niche modeling,
  • Greater Antilles,
  • Neotropics.
  • Antillas Mayores,
  • Centro América,
  • modelado de nicho ecológico,
  • Neotrópico.

Resumen

Antecedentes y Objetivos: Mappia (Icacinaceae) es un género de cuatro especies que habitan Mesoamérica y las Antillas Mayores. El más reciente análisis filogenético del género basado en datos morfológicos apoyó la existencia de un clado continental formado por Mappia longipes, M. mexicana y M. multiflora como grupo hermano de M. racemosa que se distribuye en las Antillas. El objetivo fue evaluar si datos ambientales soportan las hipótesis previas propuestas para las entidades de Mappia.

Métodos: Se realizaron análisis de nicho ecológico (modelado de nicho ambiental y pruebas de divergencia/conservadurismo de nicho) y de varianza multivariado (MANOVA) para evaluar si existen otras líneas de evidencia que respalden la hipótesis morfológica previa a nivel de especie e infraespecífico.

Resultados clave: Se encontró una diferenciación ecológica entre M. multiflora (sureste de México a Costa Rica) y M. racemosa (Cuba, Jamaica y Puerto Rico (Antillas Mayores)), pero no entre los taxones infraespecíficos de las Antillas (M. racemosa var. brachycarpa y M. racemosa var. racemosa).

Conclusiones: Nuestro estudio aporta una importante señal de la divergencia ecológica entre especies cercanamente emparentadas, pero con patrones de distribución disyunta.

Citas

  1. Anderson, R. P., M. Gómez-Laverde and A. T. Peterson. 2002a. Geographical distributions of spiny pocket mice in South America: Insights from predictive models. Global Ecology and Biogeography 11(2): 131-141. DOI: https://doi.org/10.1046/j.1466-822X.2002.00275.x
  2. Anderson, R. P., A. T. Peterson and M. Gómez-Laverde. 2002b. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98(1): 3-16. DOI: https://doi.org/10.1034/j.1600-0706.2002.t01-1-980116.x
  3. Angulo, D. F. 2006. Análisis filogenético y sistemática del género Mappia (Icacinaceae) en el Neotrópico a partir de caracteres morfo-anatómicos. Tesis de licenciatura. Instituto Tecnológico de Conkal. Conkal, Yucatán, México. 75 pp.
  4. Angulo, D. F., V. Sosa and J. G. García-Franco. 2014a. Floral movement: Stamen motion in Berberis trifoliolata. Botanical Sciences 92(1): 141-144. DOI: https://doi.org/10.17129/botsci.46
  5. Angulo, D. F., L. D. Amarilla and V. Sosa. 2014b. Incipient speciation in the Chihuahuan Desert shrub Berberis trifoliolata under divergent climate scenarios. Botany 92(3): 195-201. DOI: https://doi.org/10.1139/cjb-2013-0213
  6. Angulo, D. F., R. Duno de Stefano and G. W. Stull. 2013. Systematics of Mappia (Icacinaceae), an endemic genus of tropical America. Phytotaxa 116(1): 1-18. DOI: https://doi.org/10.11646/phytotaxa.116.1.1
  7. Baehni, C. 1936. Revision des genres Neoleretia, Mappia et Humirianthera. Candollea 7: 167-184.
  8. Barnosky, A. D. 2005. Effects of Quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution 12: 247-264. DOI: https://doi.org/10.1007/s10914-005-4858-8
  9. Barraclough, T. G., A. P. Vogler and P. H. Harvey. 1998. Revealing the factors that promote speciation. Philosophical Transactions of the Royal Society B: Biological Sciences 353: 241-249. DOI: https://doi.org/10.1098/rstb.1998.0206
  10. Chase, J. M. and M. A. Leibold. 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press. Chicago, USA. 212 pp.
  11. Duno de Stefano, R. and D. F. Angulo. 2010. Icacinaceae. In: Greuter, W. and R. Rodríguez (eds.). Flora de la República de Cuba, serie A, plantas vasculares. Gantner, Ruggell, Liechtenstein. fascículo 16(4). Pp 13.
  12. Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1): 38-49. DOI: https://doi.org/10.1017/S0376892997000088
  13. Funk, D. J., S. P. Egan and P. Nosil. 2011. Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology 20: 4671-4682. DOI: https://doi.org/10.1111/j.1365-294X.2011.05311.x
  14. Gaubert, P., M. Papes and A. T. Peterson. 2006. Natural history collections and the conservation of poorly known taxa: Ecological niche modeling in central African rainforest genets (Genetta spp.). Biological Conservation 130(1): 106-11. DOI: https://doi.org/10.1016/j.biocon.2005.12.006
  15. GBIF. 2019. GBIF Secretariat: GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei Accessed via https://www.gbif.org/species/3169093 (consulted January, 2020).
  16. Graham, C. H., S. R. Ron, J. C. Santos, C. J. Schneider and C. Moritz. 2004. Integrating
  17. phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58(8): 1781-1793. DOI: https://doi.org/10.1111/j.0014-3820.2004.tb00461.x
  18. Hammer, Ø., D. A. T. Harper and P. D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9 pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (consulted January, 2019).
  19. Hengl, T., J. Mendes de Jesus, G. B. M. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić, W. Shangguan, M. N. Wright, X. Geng, B. Bauer-Marschallinger, M. A. Guevara, R. Vargas, R. A. MacMillan, N. H. Batjes, J. G. B. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel and B. Kempen. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12(2): e0169748. DOI: https://doi.org/10.1371/journal.pone.0169748
  20. Hernandez, P. A., C. H. Graham, L. L. Master and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5): 773-785. DOI: https://doi.org/10.1111/j.0906-7590.2006.04700.x
  21. Hijmans, R. J., S. Cameron, J. Parra, P. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965-1978. DOI: https://doi.org/10.1002/joc.1276
  22. Howard, R. A. 1942. Studies of the Icacinaceae II. Humirianthera, Leretia, Mappia and Nothapodytes, valid genera of the Icacineae. Journal of the Arnold Arboretum 23: 55-78.
  23. Hua, X. and J. J. Wiens. 2013. How Does Climate Influence Speciation? American Naturalist 182(1): 1-12. DOI: https://doi.org/10.1086/670690
  24. Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427.
  25. IBM. 2010. IBM SPSS Statistics for Windows, Version 19.0. IBM Corp. Armonk, USA
  26. Jansson, R. and M. Dynesius. 2002. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. The Annual Review of Ecology, Evolution, and Systematics 33: 741-777. DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150520
  27. Johnson, N. K. and C. Cicero. 2002. The role of ecologic diversification in sibling speciation of Empidonax flycatchers (Tyrannidae): multigene evidence from mtDNA. Molecular Ecology 11(10): 2065-2081. DOI: https://doi.org/10.1046/j.1365-294x.2002.01588.x
  28. Kozak, K. H. and J. J. Wiens. 2007. Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society of London. Series B 274: 2995-3003. DOI: https://doi.org/10.1098/rspb.2007.1106
  29. Levin, D. A. 2000. The origin, expansion, and demise of plant species. Oxford University Press. New York, USA. 230 pp.
  30. Levin, D. A. 2003. The ecological transition in speciation. New Phytologist 161(1): 91-96. DOI: https://doi.org/10.1046/j.1469-8137.2003.00921.x
  31. Lobo, J. M., A. Jiménez-Valverde and R. Real. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17(2): 145-151. DOI: https://doi.org/10.1111/j.1466-8238.2007.00358.x
  32. Longino, J. T., J. Coddington and R. K. Colwell. 2002. The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology 83(3): 689-702. DOI: https://doi.org/10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
  33. Lowry, D. B., R. C. Rockwood and J. H. Willis. 2008. Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62(9): 2196-2214. DOI: https://doi.org/10.1111/j.1558-5646.2008.00457.x
  34. Lundell, C. L. 1942. Studies of American spermatophytes-II. Contributions from the University of Michigan Herbarium 7: 1-54.
  35. Martínez-Gordillo, D., O. Rojas-Soto and A. Espinosa de los Monteros. 2010. Ecological niche modelling as an exploratory tool for identifying species limits: an example based on Mexican muroid rodents. The Journal of Evolutionary Biology 23(2): 259-270. DOI: https://doi.org/10.1111/j.1420-9101.2009.01897.x
  36. Martınez-Meyer, E., A. T. Peterson and A. G. Navarro-Sigüenza. 2004. Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society B: Biological Sciences 271(1544): 1151-1157. DOI: https://doi.org/10.1098/rspb.2003.2564
  37. McCormack, J. E., A. J. Zellmer and L. L. Knowles. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution 64(5): 1231-1244. DOI: https://doi.org/10.1111/j.1558-5646.2009.00900.x
  38. Mittelbach, G. G., D. W. Schemske, H. V. Cornell, A. P. Allen, J. M. Brown, M. B. Bush, S. P. Harrison, A. H. Hurlbert, N. Knowlton, H. A. Lessios, C. M. McCain, A. R. McCune, L. A. McDade, M. A. McPeek, T. J. Near, T. D. Price, R. E. Ricklefs, K. Roy, D. F. Sax, D. Schluter, J. M. Sobel and M. Turelli. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10(4): 315-331. DOI: https://doi.org/10.1111/j.1461-0248.2007.01020.x
  39. Murienne, J., E. Guilbert and P. Grandcolas. 2009. Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), and approach using phylogeny and species’ distribution modelling. Biological Journal of the Linnean Society 97(1): 177-184. DOI: https://doi.org/10.1111/j.1095-8312.2008.01184.x
  40. Nakazato, T. D., L. Warren and L. C. Moyle. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany 97(4): 680-693. DOI: https://doi.org/10.3732/ajb.0900216
  41. Peterson, A. T. 2003. Predicting the Geography of Species’ Invasions via Ecological Niche Modeling. The Quarterly Review of Biology 78(4): 419-433. DOI: https://doi.org/10.1086/378926
  42. Peterson, A. T. 2007. Why not WhyWhere: the need for more complex models of simpler environmental spaces. Ecological Modelling 203(3-4): 527-530. DOI: https://doi.org/10.1016/j.ecolmodel.2006.12.023
  43. Peterson, A. T, M. Papeş and M. Eaton. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography 30(4): 550-560. DOI: https://doi.org/10.1111/j.0906-7590.2007.05102.x
  44. Peterson, M. L., K. J. Rice and J. P. Sexton. 2013. Niche partitioning between close relatives suggests trade-offs between adaptation to local environments and competition. Ecology and Evolution 3(3): 512-522. DOI: https://doi.org/10.1002/ece3.462
  45. Phillips, S. J., R. P. Anderson and R. E. Shapire. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling 190(3-4): 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
  46. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ (consulted January, 2017).
  47. Rabinowitz, D. 1981. Seven forms of rarity. In: Synge, H. (ed.). The biological aspects of rare plants conservation. Wiley, New York. USA. Pp. 205-217.
  48. REMIB. 2019. Red mundial de información sobre biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. http://www.conabio.gob.mx/remib (consulted January, 2019).
  49. Rissler, L. J. and J. J. Apodaca. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology 56(6): 924-942. DOI: https://doi.org/10.1080/10635150701703063
  50. Robinson, B. L. and J. M. Greenman. 1895. New and noteworthy plants chiefly from Oaxaca collected by Messrs. C. G. Pringle, L. C. Smith and E. W. Nelson. American Journal of Science, and Arts, ser. 3, 50: 150-168.
  51. Schneider, C. J. and C. Moritz. 1998. Comparative phylogeography and the history of endemic vertebrates in the wet tropics rainforests of Australia. Molecular Ecology 7(4): 487-498. DOI: https://doi.org/10.1046/j.1365-294x.1998.00334.x
  52. Sites, J. W. and J. C. Marshall. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology and Evolution 18(9): 462-470. DOI: https://doi.org/10.1016/S0169-5347(03)00184-8
  53. Sites, J. W. and J. C. Marshall. 2004. Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics 35: 199-227. DOI: https://doi.org/10.1146/annurev.ecolsys.35.112202.130128
  54. Sobel, J. M., G. F. Chen, L. R. Watt and D. W. Schemske. 2010. The biology of speciation. Evolution 64(2): 295-315. DOI: https://doi.org/10.1111/j.1558-5646.2009.00877.x
  55. StataCorp. 2009. Stata Statistical Software: Release 11. StataCorp. LP. College Station, USA.
  56. Thiers, B. 2020. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. New York, USA. http://sweetgum.nybg.org/science/ih/ (consulted January, 2020).
  57. Vanden Broeck, A., W. Van Landuyt, K. Cox, L. De Bruyn, R. Gyselings, G. Oostermeijer, B. Valentin, G. Bozic, B. Dolinar, Z. Illyes and J. Mergeay. 2014. High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid. BMC Ecology 14: 20. DOI: https://doi.org/10.1186/1472-6785-14-20
  58. van Proosdij, A. S. J., M. S. M. Sosef, J. J. Wieringa and N. Raes. 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39: 542-552. DOI: https://doi.org/10.1111/ecog.01509
  59. Warren, D. L. and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21(2): 335-342. DOI: https://doi.org/10.1890/10-1171.1
  60. Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell, E. I. Damschen, T. Jonathan Davies, J. A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D. Holt, C. M. McCain and P. R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13(10): 1310-1324. DOI: https://doi.org/10.1111/j.1461-0248.2010.01515.x
  61. Wiens, J. J. and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519-539. DOI: https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
  62. Wiens, J. J. and T. A. Penkrot. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51(1): 69-91. DOI: https://doi.org/10.1080/106351502753475880
  63. Wortley, A. H., P. J. Rudall, D. J. Harris and R. W. Scotland. 2005. How much data are needed to resolve a difficult phylogeny? Case Study in Lamiales. Systematic Biology 54(5): 697-709. DOI: https://doi.org/10.1080/10635150500221028