Núm. 128 (2021)
Artículo de investigación

Filogenia de Lysiloma (Fabaceae), un género restringido a Megaméxico con especies atípicas en las Antillas y Florida

Rodrigo Duno de Stefano
Centro de Investigación Científica de Yucatán, A.C. (CICY)
Biografía
Christian Tun Tun
Centro de Investigación Científica de Yucatán, A. C. (CICY)
José Enrique López Contreras
Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen
Germán Carnevali Fernández-Concha
Centro de Investigación Científica de Yucatán A. C. (CICY)
Carlos Luis Leopardi-Verde
Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima
Jorge H. Ramírez-Prado
Centro de Investigación Científica de Yucatán, A. C. (CICY)
Lilia Lorena Can Itza
Centro de Investigación Científica de Yucatán, A. C. (CICY)
Ivan Tamayo Cen
Centro de Investigación Científica de Yucatán, A. C. (CICY)
Biografía

Publicado 2021-02-25

Palabras clave

  • Acacieae,
  • Hesperalbizia,
  • Ingeae,
  • Leguminosae,
  • molecular clock,
  • Neotropics
  • ...Más
    Menos
  • Acacieae,
  • Hesperalbizia,
  • Ingeae,
  • Leguminosae,
  • Neotrópico.,
  • reloj molecular
  • ...Más
    Menos

Resumen

Antecedentes y Objetivos: Lysiloma es un género neotropical de la familia Fabaceae que comprende ocho especies, seis de las cuales se distribuyen ampliamente en México y dos más que ocurren en las Antillas y La Florida. Lysiloma es frecuente en los bosques secos de Megaméxico. Un estudio filogenético previo incluyó tres especies de Lysiloma y Hesperalbizia occidentalis. Ambos géneros están estrechamente relacionados, pero su divergencia tiene un apoyo débil. Nuestros objetivos fueron probar la monofilia del género, evaluar las relaciones de grupo hermano dentro del género y estimar los tiempos de divergencia.
Métodos: Se realizó un análisis filogenético basado en caracteres morfológicos, marcadores moleculares (ETS, matK y trnK), así como un análisis combinado (morfología + moléculas). Las matrices de datos se analizaron tanto individualmente como concatenadas (enfoque de evidencia total) con inferencia Bayesiana y máxima parsimonia. Además, los tiempos de divergencia molecular se estimaron a partir del conjunto de datos ETS con un modelo de reloj bayesiano relajado lognormal no correlacionado.
Resultados clave: El análisis morfológico respalda la monofilia del Lysiloma con Hesperalbizia como grupo hermano. Sin embargo, los análisis moleculares individuales y combinado no proporcionan resolución para aclarar las relaciones entre Hesperalbizia occidentalis, Lysiloma sabicu y el núcleo de Lysiloma. El análisis de evidencia total (incluida la morfología) respalda la monofilia de Lysiloma, pero con un bajo soporte. Según nuestro modelo de reloj molecular, el clado Lysiloma+Hesperalbizia se separó de otros miembros de la tribu Acacieae+Ingeae hace unos 32 millones de años y la diversificación del núcleo del Lysiloma se produjo a lo largo del Mioceno.
Conclusiones: Lysiloma+Hesperalbizia es un clado de divergencia temprana de las tribus Acacieae+Ingeae. Existen suficientes diferencias morfológicas para reconocer ambos linajes. Los caracteres morfológicos utilizados informalmente para la delimitación taxonómica parecen haber evolucionado de manera homoplásica. El clado de Lysiloma y Hesperalbizia se separó de otros miembros de la tribu Acacieae+Ingeae en el Oligoceno, pero la diversificación del núcleo del género coincidió con la expansión del bosque seco a principios del Mioceno.

Citas

  1. Ancona, J. J., R. Ruenes-Morales, J. Huchim-Herrera, P. Montañez-Escalante and J. A. González-Iturbe 2019. Woody species structure, diversity and floristic affinities in seasonally dry forest in the Uxmal archaeological zone. Tropical and Subtropical Agroecosystems 22: 755-767.
  2. Andrade, M. G. and M. Sousa. 2012. Lysiloma. In: Andrade, M. G., R. Grether, H. M. Hernández, R. Medina-Lemos, L. Rico and M. Sousa S. (eds.). Flora del Valle de Tehuacán-Cuicatlán. Fascículo 109. Mimosaceae. Universidad Nacional Autónoma de México. México, D.F., México. 75 pp. http://www.ibiologia.unam.mx/barra/publicaciones/floras_tehuacan/F109.pdf (consulted March, 2020).
  3. Backlund, A. and K. Bremer. 1998. To Be or Not to Be. Principles of Classification and Monotypic Plant Families. Taxon 47(2): 391-400. DOI: https://doi.org/10.2307/1223768
  4. Baldwin, B. G. and S. Markos. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10(3): 449-463. DOI: https://doi.org/10.1006/mpev.1998.0545
  5. Barneby, R. C. and J. W. Grimes. 1996. Silk tree, Guanacaste, Monkey’s earring: a generic system for the synandrous Mimoseae of the Americas. Part I. Abarema, Albizia and Allies. Memoirs of the New York Botanical Garden 74(1): 1-292. http://mertzdigital.nybg.org/cdm/ref/collection/p9016coll16/id/5993 (consulted March, 2020).
  6. Becerra, J. 2005. Timing the origin and expansion of the Mexican tropical dry forest. Proceedings of the National Academy of Sciences of the United States of America 102(31): 10919-10923. DOI: https://doi.org/10.1073/pnas.0409127102
  7. Bentham, G. 1844. Notes on Mimoseae. Tribe III Acacieae: Lysiloma. London Journal of Botany 3: 82-84. https://www.biodiversitylibrary.org/item/6314#page/86/mode/1up (consulted March, 2020).
  8. Bentham, G. 1875. Revision of the suborder Mimoseae. Transactions of the Linnean Society of London 30(3): 533-536. DOI: https://doi.org/10.1111/j.1096-3642.1875.tb00005.x
  9. Brown, G. 2008. Systematics of the tribe Ingeae (Leguminosae-Mimosoideae) over the past 25 years. Muelleria 26: 27-42.
  10. Brown, G. K., D. J. Murphy and P. Y. Ladiges. 2011. Relationships of the Australo-Malesian genus Paraserianthes (Mimosoideae: Leguminosae) identifies the sister group of Acacia sensu stricto and two biogeographical tracks. Cladistics 27(4): 380-390. DOI: https://doi.org/10.1111/j.1096-0031.2011.00349.x
  11. Brown, G. K., D. J. Murphy, J. T. Miller and P. Ladiges. 2008. Acacia s.s. and its relationship among tropical legumes, Tribe Ingeae (Leguminosae: Mimosoideae). Systematic Botany 33(4): 739-751. DOI: https://doi.org/10.1600/036364408786500136
  12. Caccavari, M. and V. D. Barreda. 2000. A new calymmate mimosoid polyad from the Miocene of Argentina. Review of Palaeobotany and Palynology 109(3-4): 197-203. DOI: https://doi.org/10.1016/s0034-6667(99)00051-2
  13. Calvillo‐Canadell, L. and S. R. S. Cevallos‐Ferriz. 2005. Diverse assemblage of Eocene and Oligocene Leguminosae from Mexico. International Journal of Plant Sciences 166(4): 671-692. DOI: https://doi.org/10.1086/430096
  14. Cardoso, D., W. M. B. São-Mateus, D. Trabuco da Cruz, C. E. Zartman, D. L. Komura, G. Kite, G. Prenner, J. J. Wieringa, C. Alexandra, G. Lewis, T. Pennington and L. Paganucci de Queiroz. 2015. Filling in the gaps of the papilionoid legume phylogeny: The enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade. Molecular Phylogenetics and Evolution 84: 112-124. DOI: https://doi.org/10.1016/j.ympev.2014.12.015
  15. Cervantes-Alcayde, M. A., M. E. Olson, K. M. Olsen and L. E. Eguiarte. 2015. Apparent similarity, underlying homoplasy: morphology and molecular phylogeny of the North American clade of Manihot. American Journal of Botany 102(4): 520-532. DOI: https://doi.org/10.3732/ajb.1500063
  16. Chomicki, G., L. P. Bidel, F. Ming, M. Coiro, X. Zhang, Y. Wang, Y. Baissac, C. Jay-Allemand and S. S. Renner. 2015. The velamen protects photosynthetic orchid roots against UV‐B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytologist 205(3): 1330-1341. DOI: https://doi.org/10.1111/nph.13106
  17. Darriba, D., G. L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772. DOI: https://doi.org/10.1038/nmeth.2109
  18. Ferm, J. 2019. A preliminary phylogeny of Zapoteca (Fabaceae: Caesalpinioideae: Mimosoid clade). Plant Systematics and Evolution 305: 341-352. https://doi.org/10.1007/s00606-019-01574-6
  19. Ferm, J., P. Korall, G. P. Lewis and B. Ståhl. 2019. Phylogeny of the Neotropical legume genera Zygia and Marmaroxylon and close relatives. Taxon 68(4): 661-672. DOI: https://doi.org/10.1002/tax.12117
  20. Gale, S. W. and T. D. Pennington. 2004. Lysiloma (Leguminosae: Mimosoideae) in Mesoamerica. Kew Bulletin 59(3): 453- 467. DOI: https://doi.org/10.2307/4110952
  21. Galeotti, S., R. De Conto, T. Naish, P. Stocchi, F. Florindo, M. Pagani, P. Barrett, S. M. Bohaty, L. Lanci, D. Pollard, S. Sandroni, F. M. Talarico and J. C. Zachos. 2016. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science 352(6281): 76-80. DOI: https://doi.org/10.1126/science.aab0669
  22. Genbank. 2020. National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/genbank/ (consulted March, 2020).
  23. Goloboff, P. A. 1993. Nona, v. 1.5.1. American Museum of Natural History. New York, USA.
  24. Gómez-Tuena, A., M. T. Orozco-Esquivel and L. Ferrari. 2007. Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geological Society of America, Special Paper 422: 129-181. DOI: https://doi.org/10.1130/2007.2422(05)
  25. Grimes, J. 1995. Generic Relationships of Mimosoideae tribe Ingeae, with emphasis on the New World Pithecellobium-complex. In: Crisp, M. D. and J. J. Doyle (eds.). Advances in Legume Systematics, Part 7 Phylogeny. The Royal Botanic Gardens Kew. Richmond, UK. 371 pp.
  26. Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52(5): 696-704. DOI: https://doi.org/10.1080/10635150390235520
  27. Guinet, P. and J. W. Grimes. 1997. A Summary of Pollen Characteristic of Some New World Members of the Pithecellobium-complex. Memoirs of the New York Botanical Garden 74(2): 151-161.
  28. Gustafsson, A. L. S., C. F. Verola and A. Antonelli. 2010. Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evolutionary Biology 10: 177-190. DOI: https://doi.org/10.1186/1471-2148-10-177
  29. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
  30. Heil, M., M. González-Teuberb, L. W. Clement, S. Kautz, M. Verhaagh and J. C. Silva Bueno. 2009. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proceedings of the National Academy of Sciences 106(43): 18091-18096. DOI: https://doi.org/10.1073/pnas.0904304106
  31. Heckenhauer, J. P., K. A. Salim, M. W. Chase, K. G. Dexter, R. T. Pennington, S. Tan, M. E. Kaye and R. Samuel. 2017. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo). PLOS ONE 12(10): e0185861. DOI: https://doi.org/10.1371/journal.pone.0185861
  32. Hilu, K. W., C. Black, D. Diouf and J. G. Burleigh. 2008. Phylogenetic signal in matK vs. trnK: A case study in early diverging eudicots (angiosperms). Molecular Phylogenetics and Evolution 48(3): 1120-1130. DOI: https://doi.org/10.1016/j.ympev.2008.05.021
  33. Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17(8): 754-755. DOI: https://doi.org/10.1093/bioinformatics/17.8.754
  34. Iganci, J. R., M. V. Soares, E. Guerra and M. P. Morim. 2015. A preliminary molecular phylogeny of the Abarema alliance (Leguminosae) and implications for taxonomic rearrangement. International Journal of Plant Sciences 177(1): 34-43. DOI: https://doi.org/10.1086/684078
  35. Johnson, L. A. and D. E. Soltis. 1994. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany 19(1): 143-156. DOI: https://doi.org/10.2307/2419718
  36. Katoh, K., J. Rozewicki and K. D. Yamada. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. DOI: https://doi.org/10.1093/bib/bbx108
  37. Katoh, K., K. Misawa, K-I. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059-3066. DOI: https://doi.org/10.1093/nar/gkf436
  38. Li, H. T., T. S. Yi, L. M. Gao, P. F. Ma, T. Zhang, J. B. Yang, M. A. Gitzendanner, P. W. Fritsch, J. Cai, Y. Luo, H. Wang, M. van der Bank, S. D. Zhang, Q.F. Wang, J. Wang, Z. R. Zhang, C. N. Fu, J. Yang, P. M. Hollingsworth, M. W. Chase, D. E. Soltis, P. S. Soltis and D. Z. Li. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5: 461-470. DOI: https://doi.org/10.1038/s41477-019-0421-0
  39. Losos, J. B. 2001. Evolution: A Lizard’s Tale. Scientific American 284(3): 64-69. DOI: https://doi.org/10.1038/scientificamerican0301-64
  40. LPWG. 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1): 44-77. DOI: https://doi.org/10.12705/661.3
  41. Macphail, M. K. and R. S. Hill. 2001. Palaeobotany of Acacia and related Mimosaceae. In: Australian Biological Resource Study (eds.). Flora of Australia, Volume 11A: Mimosaceae, Acacia part 1. CSIRO Publishing. Melbourne, Australia. 673 pp.
  42. Magallón-Puebla, S. and S. Cevallos-Ferriz. 1993. Fossil legume fruits from tertiary strata of Puebla, Mexico. Canadian Journal of Botany 72(7): 1027-1038. DOI: https://doi.org/10.1139/b94-129
  43. Miller, J. T. and R. J. Bayer. 2001. Molecular phylogenetics of Acacia (Fabaceae: Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. American Journal of Botany 84(4): 697-705. DOI: https://doi.org/10.2307/2657071
  44. Miller, J. T., J. W. Grimes, D. J. Murphy, R. J. Bayer and P. Y. Ladiges. 2003. A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on trnK, matK, psbA-trnH, and trnL/trnF sequence data. Systematic Botany 28(3): 558-566.
  45. Murphy, D. J., G. K. Brown, J. T. Miller and P. Y. Ladiges. 2010. Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): Evidence for major clades and informal classification. Taxon 59(1): 7-19. DOI: https://doi.org/10.1002/tax.591002
  46. Nascimento, F. F., M. dos Reis and Z. Yang. 2017. A biologist’s guide to Bayesian phylogenetic analysis. Nature Ecology and Evolution 1(10): 1446-1454. DOI: https://doi.org/10.1038/s41559-017-0280-x
  47. Nicholls, J., R. Pennington, E. Koenen, C. E. Hughes, J. Hearn, L. Bunnefeld, K. Dexter, G. N. Stone and C. A. Kidner. 2015. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Science 17: 710. DOI: https://doi.org/10.3389/fpls.2015.00710
  48. Nixon, K. C. 2002. Winclada ver. 1.0000. Published by the author. Ithaca, USA.
  49. Ortiz-Ávila, V., G. A. Arnaud-Franco, E. Estrada-Castillón, E. A. Cavazos-Lozano, G. Romero and M. Mellado. 2020. Vegetation on geomorphic surfaces in the Monserrat Island in the Gulf of California. Ecosistemas y Recursos Agropecuarios 7(2): e2334.
  50. Pérez‐Escobar, O. A., G. Chomicki, F. L. Condamine, A. P. Karremans, D. Bogarín, N. J. Matzke, D. Silvestro and A. Antonelli. 2017. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytologist 215(2): 891-905. DOI: https://doi.org/10.1111/nph.14629
  51. Pindell, J. and L. Kennan. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society London Special Publications 328(1):1-55. DOI: https://doi.org/10.1144/SP328.1
  52. Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253-1256. DOI: https://doi.org/10.1093/molbev/msn083
  53. Rambaut, A. 2014. FigTree v. 1.4.2. A Graphical Viewer of Phylogenetic Trees. Available from http://tree.bio.ed.ac.uk/software/figtree/ (consulted March, 2020)
  54. Rambaut, A., M. A. Suchard, D. Xie and A. J. Drummond. 2014. Tracer v. 1.6. http://beast.bio.ed.ac.uk/Tracer (consulted March, 2020).
  55. Rascón-Ayala, J. M., E. Alanís-Rodríguez, A. Mora-Olivo, E. Buendía-Rodríguez, L. Sánchez-Castillo and J. E. Silva-García. 2018. Differences of vegetation structure and diversity of a forest in an altitudinal gradient of the Sierra La Laguna Biosphere Reserve, Mexico. Botanical Sciences 96(4): 598-608. DOI: https://doi.org/10.17129/botsci.1993
  56. Rico Arce, M. de L. 1992. New chromosome counts in neotropical Albizia, Havardia and Pithecellobium, and a new combination for Albizia (Leguminosae-Mimosoideae-Ingeae). Botanical Journal of the Linnean Society 108(3): 269-274. DOI: https://doi.org/10.1111/j.1095-8339.1992.tb00243.x
  57. Rico Arce, M. de L., S. L. Gale and N. Maxted. 2008. A taxonomic study of Albizia (Leguminosae: Mimosoideae: Ingeae) in Mexico and Central America. Anales del Jardín Botánico de Madrid 65(2): 255-305. DOI: https://doi.org/10.3989/ajbm.2008.v65.i2.294
  58. Rindal, E. and A. V. Z. Brower. 2010. Do model‐based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27(3): 331-334. DOI: https://doi.org/10.1111/j.1096-0031.2010.00342.x
  59. Rodriguez de Souza, E., M. Krishnaraj and L. P. de Queiroz. 2016. Sanjappa, a new genus in the tribe Ingeae (Leguminosae: Mimosoideae) from India. Rheedea 26(1): 1-12.
  60. Rodriguez de Souza, E., G. P. Lewis, F. Forest, A. S. Schnadelbach, C. van den Berg and L. P. de Queiroz. 2013. Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers. Taxon 62(6): 1201-1220. DOI: https://doi.org/10.12705/626.2
  61. Rokas, A. and S. B. Carroll. 2005. More Genes or More Taxa? The Relative Contribution of Gene Number and Taxon Number to Phylogenetic Accuracy. Molecular Biology and Evolution 22(5): 1337-1344. DOI: https://doi.org/10.1093/molbev/msi121
  62. Ronquist, F. and J. P. Huelsenbeck. 2003. MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572-1574. DOI: https://doi.org/10.1093/bioinformatics/btg180
  63. Rzedowski, J. 1991. Diversidad y orígenes de la flora fanerogámica de México. Acta Botanica Mexicana 14: 3-21. DOI: https://doi.org/10.21829/abm14.1991.611
  64. Simon, M. F., R. Grether, L. P. de Queiroz, C. Skema, R. T. Pennington and C. E. Hughes. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences 106(48): 20359-20364. DOI: https://doi.org/10.1073/pnas.0903410106
  65. Sorsa, P. 1969. Pollen morphological studies on the Mimosaceae. Annales Botanici Fennici 6(1): 1-34.
  66. Sosa, V., J. A. De-Nova and M. Vásquez‐Cruz. 2018. Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism. Journal of Sytematics and Evolution 56(5): 523-536. DOI: https://doi.org/10.1111/jse.12416
  67. Stull, G. W., R. Duno de Stefano, D. E. Soltis and P. S. Soltis. 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. American Journal Botany 102(11): 1794-1813. DOI: https://doi.org/10.3732/ajb.1500298
  68. Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond and A. Rambaut. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1): vey016. DOI: https://doi.org/10.1093/ve/vey016
  69. Thiers, B. 2020 (continuously updated). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. New York, USA. http://sweetgum.nybg.org/ih/ (consulted March, 2020).
  70. Thompson, R. 1980. A revision of the genus Lysiloma (Leguminosae). PhD dissertation. Southern Illinois University. Carbondale, USA. 132 pp.
  71. Wortley, A. H., P. J. Rudall, D. J. Harris and R. W. Scotland. 2005. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Systematic Biology 54(5): 697-709. DOI: https://doi.org/10.1080/10635150500221028