Núm. 129 (2022)
Artículo de investigación

Análisis fitoquímico y actividad antidiabética, antibacteriana y antifúngica de hojas de Bursera simaruba (Burseraceae)

Dennis Adrián Infante-Rodríguez
INECOL A.C.
Cristina Landa-Cansigno
Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®️, Carretera Antigua a Coatepec 351, Xalapa Veracruz, 91073, México.
Angélica Gutiérrez-Sánchez
INECOL
Biografía
Diana Lizzet Murrieta-León
INECOL
Biografía
Celeste Reyes-López
INECOL
Biografía
Adriana Belén Castillejos-Pérez
INECOL
Biografía
José Efrain Pucheta-Fiscal
INECOL
Biografía
Alberto Carlos Velázquez-Narváez
INECOL
Biografía
Juan Luis Monribot-Villanueva
INECOL
Biografía
José Antonio Guerrero-Analco
INECOL
Biografía

Publicado 2022-12-14

Resumen

Antecedentes y Objetivos: Las hojas de Bursera simaruba se utilizan tradicionalmente para tratar diversas enfermedades. Sin embargo, existen pocos reportes sobre la descripción de los fitoquímicos potencialmente responsables de tales actividades biológicas. Por lo tanto, este estudio tuvo como objetivo describir el potencial antifúngico, antibacteriano y antidiabético mediante experimentos in vitro, así como contribuir al conocimiento de la composición química de las hojas de B. simaruba.

Métodos: Se analizó la actividad antibacteriana, antifúngica y antidiabética de un extracto metanólico (MeOH-Ex) de hojas de B. simaruba, y se detectaron diferentes grupos de metabolitos secundarios mediante ensayos cualitativos. Además, el análisis fitoquímico de MeOH-Ex se determinó con cromatografía líquida de ultra alta resolución acoplada a espectrometría de masas de alta resolución (UHPLC-ESI+-MS-QTOF), y las identificaciones putativas se realizaron utilizando bases de datos espectrales públicas.

Resultados clave: El MeOH-Ex de las hojas de B. simaruba contiene cualitativamente alcaloides, terpenos y esteroides, saponinas, taninos, cumarinas y compuestos fenólicos, tales como ácido cafeico, ácido clorogénico, apigenina, kaempferol, florizina, quercitrina, quercetina-glucósido y apigenina-glucósido. Además, se identificaron tentativamente los lignanos burseran y yatein. El MeOH-Ex exhibió una baja actividad antifúngica contra Fusarium solani (16.3% de inhibición del crecimiento micelial) y un alto efecto antidiabético por inhibición in vitro de las enzimas α-amilasa (87.7%) y α-glucosidasa (75.9%). Finalmente, el estándar de ácido clorogénico mostró una inhibición significativa de las enzimas α-amilasa (49.5%) y α-glucosidasa (85.1%).

Conclusiones: El MeOH-Ex de las hojas de B. simaruba representa una fuente de metabolitos secundarios con potencial actividad antidiabética. Los compuestos fenólicos tentativamente identificados podrían desempeñar un papel importante en la prevención de trastornos por hiperglucemia posprandial al inhibir las enzimas α-amilasa y α-glucosidasa. Destaca la presencia de ácido clorogénico como uno de los principales compuestos bioactivos potenciales en las hojas de B. simaruba.

Métricas

Cargando métricas ...

Citas

  1. Abdel-Hady, H., E. A. El-Wakil and E. A. Morsi. 2019. Characterization of ethyl acetate and methanol extracts of Commiphora myrrha and evaluating in vitro anti-diabetic and anti-obesity activities. Journal of Applied Pharmaceutical Science 9(9): 38-44. DOI: https://doi.org/10.7324/JAPS.2019.90906 DOI: https://doi.org/10.7324/JAPS.2019.90906
  2. Ali, H., P. J. Houghton and A. Soumyanath. 2006. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology 107(3): 449-455. DOI: https://doi.org/10.1016/j.jep.2006.04.004 DOI: https://doi.org/10.1016/j.jep.2006.04.004
  3. Alonso-Castro, A. J., F. Domínguez, J. J. Maldonado-Miranda, L. J. Castillo-Pérez, C. Carranza-Álvarez, E. Solano, M. A. Isiordia-Espinoza, M. C. Juárez-Vázquez, J. R. Zapata-Morales, M. A. Argueta-Fuentes, A. J. Ruiz-Padilla, C. R. Solorio-Alvarado, J. E. Rangel-Velázquez, R. Ortíz-Andrade, I. Gonzaléz-Sánchez, G. Cruz-Jiménez and L. M. Orozco-Castellanos. 2017. Use of medicinal plants by health professionals in Mexico. Journal of Ethnopharmacology 198: 81-86. DOI: https://doi.org/10.1016/j.jep.2016.12.038 DOI: https://doi.org/10.1016/j.jep.2016.12.038
  4. Álvarez, Á. L., S. Habtemariam and F. Parra. 2015. Inhibitory effects of lupene-derived pentacyclic triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in vitro replication. Natural Product Research 29(24): 2322-2327. DOI: https://doi.org/10.1080/14786419.2015.1007456 DOI: https://doi.org/10.1080/14786419.2015.1007456
  5. Alvin, A., K. I. Miller and B. A. Neilan. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological Research 169(7-8): 483-495. DOI: https://doi.org/10.1016/j.micres.2013.12.009 DOI: https://doi.org/10.1016/j.micres.2013.12.009
  6. Anand, U., N. Jacobo-Herrera, A. Altemimi, N. Lakhssassi. 2019. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 9(11): 258. DOI: https://doi.org/10.3390/metabo9110258 DOI: https://doi.org/10.3390/metabo9110258
  7. Andrade-Cetto, A., J. Becerra-Jiménez and R. Cárdenas-Vázquez. 2008. Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. Journal of Ethnopharmacology 116(1): 27-32. DOI: https://doi.org/10.1016/j.jep.2007.10.031 DOI: https://doi.org/10.1016/j.jep.2007.10.031
  8. Ankli, A., O. Sticher and M. Heinrich. 1999. Medical ethnobotany of the Yucatec Maya: Healers’ consensus as a quantitative criterion. Economic Botany 53(2): 144-160. DOI: https://doi.org/10.1007/bf02866493 DOI: https://doi.org/10.1007/BF02866493
  9. Atanasova-Pénichon, V., L. Legoahec, S. Bernillon, C. Deborde, M. Maucourt, M. N. Verdal-Bonnin, L. Pinson-Gadais, N. Ponts, A. Moing and F. Richard-Forget. 2018. Mycotoxin biosynthesis and central metabolism are two interlinked pathways in Fusarium graminearum, as demonstrated by the extensive metabolic changes induced by caffeic acid exposure. Applied and Environmental Microbiology 84(8): e01705-e01717. DOI: https://doi.org/10.1128/AEM.01705-17 DOI: https://doi.org/10.1128/AEM.01705-17
  10. Avendaño Reyes, S. and I. Acosta Rosado. 2016. Plantas utilizadas como cercas vivas en el estado de Veracruz. Madera y Bosques 6(1): 55-71. DOI: https//doi.org/10.21829/myb.2000.611342 DOI: https://doi.org/10.21829/myb.2000.611342
  11. Bah, M., D. M. Gutiérrez-Avella, S. Mendoza, V. Rodríguez-López and R. Castañeda-Moreno. 2014. Chemical constituents and antioxidant activity of extracts obtained from branch bark of Bursera simaruba. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13(6): 527-536.
  12. Bhandari, M. R., N. Jong-Anurakkun, G. Hong and J. Kawabata. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw). Food Chemistry 106(1): 247-252. DOI: https://doi.org/10.1016/j.foodchem.2007.05.077 DOI: https://doi.org/10.1016/j.foodchem.2007.05.077
  13. Bischoff, H. 1994. Pharmacology of alpha-glucosidase inhibition. European Journal of Clinical Investigation 24(3): 3-10. DOI: https://doi.org/10.1111/j.1365-2362.1994.tb02249.x
  14. Bonilla-Landa, I., J. M. Callejas-Linares, E. M. Cortazar-Murillo, F. Ramón Farías, M. Guevara-Valencia, J. L. Monribot-Villanueva and J. A. Guerrero-Analco. 2022. Antibacterial activity and phenolic profile of the methanolic extract from the aerial parts of Hyptis suaveolens (Lamiaceae). Acta Botanica Mexicana 129: e1920. DOI: https://doi.org/10.21829/abm129.2022.1920 DOI: https://doi.org/10.21829/abm129.2022.1920
  15. Borges-Argáez, R. L., M. J. Chan-Bacab, F. Escalante-Erosa, F. May-Pat, L. Medina-Baizabál, Y. C. Ojeda-Uc, S. R. Peraza-Sánchez, M. Pérez-Rodríguez, N. E. Salazar-Aguilar, P. Simá-Polanco and L. M. Peña-Rodríguez. 2000. Bioactive metabolites from Yucatecan medicinal plants. In: Shahidi, F. and C. Ho (eds.). Phytochemicals and Phytopharmaceuticals. AOCS Press. Illinois, USA. Pp. 332-341.
  16. Borsato, M. L. C., C. F. F. Grael, G. E. P. Souza and N. P. Lopes. 2000. Analgesic activity of the lignans from Lychnophora ericoides. Phytochemistry 55(7): 809-813. DOI: https://doi.org/10.1016/s0031-9422(00)00388-5 DOI: https://doi.org/10.1016/S0031-9422(00)00388-5
  17. Carretero, M. E., J. L. López-Pérez, M. J. Abad, P. Bermejo, S. Tillet, A. Israel and B. Noguera-P. 2008. Preliminary study of the anti-inflammatory activity of hexane extract and fractions from Bursera simaruba (Linneo) Sarg. (Burseraceae) leaves. Journal of Ethnopharmacology 116(1): 11-15. DOI: https://doi.org/10.1016/j.jep.2007.10.034 DOI: https://doi.org/10.1016/j.jep.2007.10.034
  18. Castellanos-Castro, C. and C. Bonfil. 2010. Establecimiento y crecimiento inicial de estacas de tres especies de Bursera Jacq. ex L. Revista Mexicana de Ciencias Forestales 1(2): 93-106.
  19. Castro-Juárez, C. J., N. Villa Ruano, S. A. Ramírez García and C. Mosso González. 2014. Uso medicinal de plantas antidiabéticas en el legado etnobotánico oaxaqueño. Revista Cubana de Plantas Medicinales 19(1): 101-120.
  20. ChemSpider. 2022. Data Sources. Royal Society of Chemistry. Cambridge, UK. http://www.chemspider.com/ (consulted May 2022).
  21. Chtioui, W., V. Balmas, G. Delogu, Q. Migheli and S. Oufensou. 2022. Bioprospecting phenols as inhibitors of trichothecene-producing Fusarium: sustainable approaches to the management of wheat pathogens. Toxins 14(2): 72. DOI: https://doi.org/10.3390/toxins14020072 DOI: https://doi.org/10.3390/toxins14020072
  22. Cseke, L. J., W. N. Setzer, B. Vogler, A. Kirakosyan and P. B. Kaufman. 2006. Traditional, analytical and preparative separations of natural products. In: Cseke, L. J., A. Kirakosyan, P. B. Kaufman, S. L. Warber, J. A. Duke and H. L. Brielman (eds.). Natural products from plants. CRC Press. Boca Raton, USA. Pp. 263-318. DOI: https://doi.org/10.1201/9781420004472.ch8
  23. DeCarlo, A., N. S. Dosoky, P. Satyal, A. Sorensen and W. N. Setzer. 2019. The essential oils of the Burseraceae. In: Malik, S. (eds.). Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production. Springer Nature, Champ, Switzerland. Pp. 61-145. DOI: https://doi.org/10.1007/978-3-030-16546-8_4 DOI: https://doi.org/10.1007/978-3-030-16546-8_4
  24. Deepak, R. P., A. Biva, P. Dama, S. Sushila and P. J. Giri. 2021. Inhibition of α-amylase and α-glucosidase activities in vitro by extracts of selected medicinal plants. Biodiversitas 22(3): 1187-1193. DOI: https://doi.org/10.13057/biodiv/d220314 DOI: https://doi.org/10.13057/biodiv/d220314
  25. De Mendiburu, F. 2010. Agricolae: Statistical procedures for agricultural research. R package ver. 1.0-9. http://CRAN.R-project.org/package=agricolae (consulted, July 2022).
  26. Dewick, P. 1997. Secondary metabolism: The building blocks and construction mechanisms. In: Dewick, P. (ed.). Medicinal natural products: A biosyntetic approach. John Wiley and Sons Ltd. West Sussex, UK. Pp. 152-213.
  27. Domínguez, X. A. 1973. Métodos de investigación fitoquímica. Ed. Limusa. Monterey, México. 281 pp.
  28. Food Database. 2022. Food Database ver. 1.0. Canadian Institutes of Health Research, Canada Foundation for Innovation, and The Metabolomics Innovation Centre (TMIC). Alberta, Canada. https://foodb.ca/ (consulted May 2022).
  29. Gigliarelli, G., J. X. Becerra, M. Curini and M. C. Marcotullio. 2015. Chemical composition and biological activities of fragrant Mexican copal (Bursera spp.). Molecules 20(12): 22383-22394. DOI: https://doi.org/10.3390/molecules201219849 DOI: https://doi.org/10.3390/molecules201219849
  30. Guevara-Avendaño, E., A. A. Bejarano-Bolívar, A. K. Kiel-Martínez, M. Ramírez-Vázquez, A. Méndez-Bravo, E. A. Von Wobeser, D. Sánchez-Rangel, J. A. Guerrero-Analco, A. Eskalen and F. Reverchon. 2018. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiological Research 219: 74-83. DOI: https://doi.org/10.1016/j.micres.2018.11.009 DOI: https://doi.org/10.1016/j.micres.2018.11.009
  31. Heinrich, M. 2000. Ethnobotany and its role in drug development. Phytotherapy Research 14(7): 479-488. DOI: https://doi.org/10.1002/1099-1573(200011)14:7<479::AID-PTR958>3.0.CO;2-2 DOI: https://doi.org/10.1002/1099-1573(200011)14:7<479::AID-PTR958>3.0.CO;2-2
  32. Jang, D. S., M. Cuendet, B. N. Su, S. Totura, S. Riswan, H. H. S. Fong, J. M. Pezzuto and A. D. Kinghorn. 2004. Constituents of the seeds of Hernandia ovigera with inhibitory activity against Cyclooxygenase-2. Planta Medica 70(10): 893-896. DOI: https://doi.org/10.1055/s-2004-832612 DOI: https://doi.org/10.1055/s-2004-832612
  33. Juárez-Trujillo, N., J. L. Monribot-Villanueva, V. M. Jiménez-Fernández, R. Súarez-Montaño, Á. S. Aguilar-Colorado, J. A. Guerrero-Analco and M. Jiménez. 2018. Phytochemical characterization of Izote (Yucca elephantipes) flowers. Journal of Applied Botany and Food Quality 91: 202-210. DOI: https://doi.org/10.5073/JABFQ.2018.091.027
  34. Kasote, D. M., S. S. Katyare, M. V. Hegde and H. Bae. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International journal of biological sciences 11(8): 982-991.
  35. Katyare, S. S., M. V. Hegde and H. Bae. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International journal of biological sciences 11(8): 982. DOI: https://doi.org/10.7150/ijbs.12096
  36. Kitts, D. D., Y. V. Yuan, A. N. Wijewickreme and L. U. Thompson. 1999. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular and Cellular Biochemistry 202(1/2): 91-100. DOI: https://doi.org/10.1023/a:1007022329660 DOI: https://doi.org/10.1023/A:1007022329660
  37. Landa-Cansigno, C., E. E. Hernández-Domínguez, J. L. Monribot-Villanueva, A. F. Licea-Navarro, L. E. Mateo-Cid, A. Segura-Cabrera and J. A. Guerrero-Analco. 2020. Screening of Mexican tropical seaweeds as sources of α-amylase and α-glucosidase inhibitors. Algal Research 49: 101954. DOI: https://doi.org/10.1016/j.algal.2020.101954 DOI: https://doi.org/10.1016/j.algal.2020.101954
  38. Maldini, M., P. Montoro, S. Piacente and C. Pizza. 2009a. ESI-MS, ESI-MS/MS fingerprint and LC-ESI-MS analysis of Proathocyanidins from Bursera simaruba Sarg Bark. Natural Product Communications 4(12): 1671-1674. DOI: https://doi.org/10.1177/1934578X0900401212 DOI: https://doi.org/10.1177/1934578X0900401212
  39. Maldini, M., P. Montoro, S. Piacente and C. Pizza. 2009b. Phenolic compounds from Bursera simaruba Sarg. bark: Phytochemical investigation and quantitative analysis by tandem mass spectrometry. Phytochemistry 70(5): 641-649. DOI: https://doi.org/10.1016/j.phytochem.2009.02.009 DOI: https://doi.org/10.1016/j.phytochem.2009.02.009
  40. Marcotullio, M. C., M. Curini and J. X. Becerra. 2018. An ethnopharmacological, phytochemical and pharmacological review on lignans from Mexican Bursera spp. Molecules 23(8): 1976. DOI: https://doi.org/10.3390/molecules23081976 DOI: https://doi.org/10.3390/molecules23081976
  41. Medina-Romero, Y. M., A. B. Hernandez-Hernandez, M. A. Rodríguez-Monroy and M. M. Canales-Martínez. 2021. Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Scientific Reports 11: 20135. DOI: https://doi.org/10.1038/s41598-021-99773-0 DOI: https://doi.org/10.1038/s41598-021-99773-0
  42. METLIN. 2022. METLIN Database. The Scripps Research Institute. La Jolla, USA. https://metlin.scripps.edu/ (consulted May 2022).
  43. Monribot-Villanueva, J. L., J. S. Rodríguez-Fuentes, C. Landa-Cansigno, D. A. Infante-Rodríguez, J. P. Díaz-Abad and J. A. Guerrero-Analco. 2020. Comprehensive profiling and identification of bioactive components from methanolic leaves extract of Juniperus deppeana and its in vitro antidiabetic activity. Canadian Journal of Chemistry 98(12): 764-770. DOI: https://doi.org/10.1139/cjc-2020-0177 DOI: https://doi.org/10.1139/cjc-2020-0177
  44. Noge, K., D. L. Venable and J. X. Becerra. 2011. 2-Phenylethanol in the leaves of Bursera velutina Bullock (Burseraceae). Acta Botanica Mexicana 97: 9-16. DOI: https://doi.org/10.21829/abm97.2011.245 DOI: https://doi.org/10.21829/abm97.2011.245
  45. Noguera, B., E. Dı́az, M. V. Garcı́a, A. San Feliciano, J. L. López-Perez and A. Israel. 2004. Anti-inflammatory activity of leaf extract and fractions of Bursera simaruba (L.) Sarg (Burseraceae). Journal of Ethnopharmacology 92(1): 129-133. DOI: https://doi.org/10.1016/j.jep.2004.02.009 DOI: https://doi.org/10.1016/j.jep.2004.02.009
  46. Oboh, G., O. M. Agunloye, S. A. Adefegha, A. J. Akinyemi and A. O. Ademiluyi. 2015. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. Journal of Basic and Clinical Physiology and Pharmacology 26(2): 165-170. DOI: https://doi.org/10.1515/jbcpp-2013-0141 DOI: https://doi.org/10.1515/jbcpp-2013-0141
  47. Orantes-García, C., M. Á. Pérez-Farrera, C. U. Carpio-Penagos and C. Tejeda-Cruz. 2013. Aprovechamiento del recurso maderable tropical nativo en la comunidad de Emilio Rabasa, Reserva de la Biosfera Selva El Ocote, Chiapas, México. Madera y Bosques 19(3): 7-21. DOI: https://doi.org/10.21829/myb.2013.193324 DOI: https://doi.org/10.21829/myb.2013.193324
  48. Pani, G., B. Scherm, E. Azara, V. Balmas, Z. Jahanshiri, P. Carta, D. Fabbri, M. A. Dettori, A. Fadda, A. Dessì, R. Dallocchio, Q. Migueli and G. Delogu. 2014. Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. Journal of Agricultural and Food Chemistry 62(22): 4969-4978. DOI: https://doi.org/10.1021/jf500647h DOI: https://doi.org/10.1021/jf500647h
  49. Pennington, T. D. and J. Sarukhán. 1998. Árboles tropicales de México. 2a. ed. Universidad Nacional Autónoma de México y Fondo de Cultura Económica. México, D.F., Mexico. 523 pp.
  50. Proença, C., D. Ribeiro, M. Freitas and E. Fernandes. 2022. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of a-amylase and a-glucosidase activity: a review. Critical Reviews in Food Science and Nutrition 62(12): 1-71. DOI: https://doi.org/10.1080/10408398.2020.1862755 DOI: https://doi.org/10.1080/10408398.2020.1862755
  51. PubChem. 2022. PubChem Database. National Center for Biotechnology Information. Rockville Pike, USA. https://pubchem.ncbi.nlm.nih.gov/ (consulted May 2022).
  52. R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/ (consulted May 2022).
  53. Ramírez-Reyes, T. I., A. S. Aguilar-Colorado, D. L. Murrieta-León, L. S. Licona-Velázquez, I. Bonilla-Landa, C. Durán-Espinosa, S. Avendaño-Reyes, J. L. Monribot-Villanueva and J. A. Guerrero-Analco. 2019. Identification of antibacterial phenolics in selected plant species from Mexican cloud forest by mass spectrometry dereplication. Chemistry and Biodiversity 16(4): e1800603. DOI: https://doi.org/10.1002/cbdv.201800603 DOI: https://doi.org/10.1002/cbdv.201800603
  54. Ramírez-Reyes, T., J. L. Monribot-Villanueva, O. D. Jiménez-Martínez, A. S. Aguilar-Colorado, I. Bonilla-Landa, N. Flores-Estévez, M. Luna-Rodríguez and J. A. Guerrero-Analco. 2018. Sesquiterpene Lactones and Phenols from Polyfollicles of Magnolia vovidessi and their antimicrobial activity. Natural Product Communications 13(5): 521-525. DOI: https://doi.org/10.1177/1934578x1801300502 DOI: https://doi.org/10.1177/1934578X1801300502
  55. Rico-Gray, V., A. Chemás and S. Mandujano. 1991. Uses of tropical deciduous forest species by the Yucatecan Maya. Agroforestry Systems 14(2): 149-161. DOI: https://doi.org/doi:10.1007/bf00045730 DOI: https://doi.org/10.1007/BF00045730
  56. Rodríguez-García, C. M., J. C. Ruiz-Ruiz, L. Peraza-Echeverría, S. R. Peraza-Sánchez, L. W. Torres-Tapia, D. Pérez-Brito, R. Tapia-Tusell, F. G. Herrera-Chalé, M. R. Segura-Campos, A. Quijano-Ramayo, J. M. Ramón-Sierra and E. Ortiz-Vázquez. 2019. Antioxidant, antihypertensive, anti-hyperglycemic, and antimicrobial activity of aqueous extracts from twelve native plants of the Yucatan coast. PLoS ONE 14(3): e0213493. DOI: https://doi.org/10.1371/journal.pone.0213493 DOI: https://doi.org/10.1371/journal.pone.0213493
  57. Rzedowski, J. and G. Calderón de Rzedowski. 1996. Burseraceae. Flora de Veracruz 94: 1-40.
  58. Sánchez-Medina, A., K. García-Sosa, F. May-Pat and L. M. Peña-Rodríguez. 2001. Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine part I. Antioxidant, antimicrobial and β-glucosidase inhibition activities. Phytomedicine 8(2): 144-151. DOI: https://doi.org/10.1078/0944-7113-00020 DOI: https://doi.org/10.1078/0944-7113-00020
  59. Sánchez-Monroy, M. B., A. M. García-Bores, J. L. Contreras-Jiménez, J. L., D. E. Torres, R. San Miguel-Chávez and P. Guevara-Féfer. 2020. Biological activity and flavonoid profile of five species of the Bursera genus. Botanical Sciences 98(4): 545-553. DOI: https://doi.org/10.17129/botsci.2624 DOI: https://doi.org/10.17129/botsci.2624
  60. Saxena, G., S. Farmer, G. H. N. Towers and R. E. W. Hancock. 1995. Use of specific dyes in the detection of antimicrobial compounds from crude plant extracts using a thin layer chromatography agar overlay technique. Phytochemical Analysis 6(3): 125-129. DOI: https://doi.org/10.1002/pca.2800060303 DOI: https://doi.org/10.1002/pca.2800060303
  61. Sharma, A., S. Khanna, G. Kaur and I. Singh. 2021. Medicinal plants and their components for wound healing applications. Future Journal of Pharmaceutical Sciences 7: 53. DOI: https://doi.org/10.1186/s43094-021-00202-w DOI: https://doi.org/10.1186/s43094-021-00202-w
  62. Singh, I. P., F. Ahmad, D. Chatterjee, R. Bajpai and N. Sengar. 2020. Natural products: drug discovery and development. In: Poduri, R. (ed.). Drug Discovery and Development. Springer. Gateway East, Singapore. Pp. 11-66. DOI: https://doi.org/10.1007/978-981-15-5534-3_2 DOI: https://doi.org/10.1007/978-981-15-5534-3_2
  63. Sylvestre, M., A. P. A. Longtin and J. Legault. 2007. Volatile leaf constituents and anticancer activity of Bursera Simaruba (L.) Sarg. essential oil. Natural Product Communications 2(12): 1273-1276. DOI: https://doi.org/10.1177/1934578x0700201217 DOI: https://doi.org/10.1177/1934578X0700201217
  64. Tucker, A. O., M. J. Maciarello, R. C. Brown, L. R. Landrum and D. Lafferty. 2009. Essential oils from the oleo-gum-resins of elephant tree or Torote (Bursera microphylla A. Gray, Burseraceae) from Arizona. Journal of Essential Oil Research 21(1): 57-58. DOI: https://doi.org/10.1080/10412905.2009.9700109 DOI: https://doi.org/10.1080/10412905.2009.9700109
  65. Tundis, R., M. R. Loizzo and F. Menichini. 2010. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-reviews in Medicinal Chemistry 10(4): 315-331. DOI: https://doi.org/10.2174/138955710791331007 DOI: https://doi.org/10.2174/138955710791331007
  66. Valencia-Mejía, E., Y. Y. León-Wilchez, J. L. Monribot-Villanueva, M. Ramírez-Vázquez, I. Bonilla-Landa and J. A. Guerrero-Analco. 2022. Isolation and identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and its antifungal activity against Fusarium kuroshium, causal agent of Fusarium dieback. Molecules 27(6): 1860. DOI: https://doi.org/10.3390/molecules27061860 DOI: https://doi.org/10.3390/molecules27061860
  67. Vásquez-Morales, S. G., E. A. Alvarez-Vega, D. A. Infante-Rodríguez, J. P. Huchin-Mian and M. Pedraza-Reyes. 2022. Evaluación de extractos de árboles endémicos (Magnolia spp.) de México contra la plaga de la mosca de la fruta y estudio fitoquímico preliminar. Polibotánica 53: 167-182. DOI: https://doi.org/10.18387/polibotanica.53.11 DOI: https://doi.org/10.18387/polibotanica.53.11
  68. WFO. 2022. World Flora Online Plant List. WFO Consortium. https://wfoplantlist.org/ (consulted November 2022).
  69. WHO. 2013. Global action plan for the prevention and control of noncommunicable diseases. 2013-2020. World Health Organization (WHO). https://www.who.int/publications/i/item/9789241506236/ (consulted October 2022).
  70. WHO. 2018. Noncommunicable Disease. World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases/ (consulted October 2022).
  71. Yasunaka, K., F. Abe, A. Nagayama, H. Okabe, L. Lozada-Pérez, E. López-Villafranco, E. Estrada Muñiz, A. Aguilar and R. Reyes-Chilpa. 2005. Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. Journal of Ethnopharmacology 97(2): 293-299. DOI: https://doi.org/10.1016/j.jep.2004.11.014 DOI: https://doi.org/10.1016/j.jep.2004.11.014