Compuestos fenólicos y volátiles, contenido total de proteínas, actividad antioxidante y antidiabética de las hojas de Palicourea padifolia (Rubiaceae)
DOI:
https://doi.org/10.21829/abm131.2024.2405Palabras clave:
antioxidantes, cromatografía de gases, espectrometría de masas, fitoquímica, flor de cera, metabolitos especializados.Resumen
Antecedentes y Objetivos: Existe poca información sobre la composición química y las actividades biológicas de Palicourea padifolia. Este estudio tuvo como objetivos 1) medir el contenido total de nutrientes, macroelementos, proteínas y metabolitos secundarios, 2) realizar análisis metabolómicos de compuestos fenólicos y volátiles, y 3) evaluar las actividades antioxidantes y antidiabéticas de las hojas de esta especie.
Métodos: El contenido total de nutrientes y macroelementos se determinó mediante métodos espectroscópicos, espectrométricos y espectrofotométricos. El contenido total de alcaloides, terpenos, fenoles, flavonoides, taninos y proteínas se determinó mediante métodos espectrofotométricos. Los compuestos volátiles y fenólicos se identificaron mediante cromatografía de gases y líquidos, respectivamente, acoplados a espectrómetros de masas. La actividad antioxidante se determinó mediante los ensayos con 2,2-difenil-1-picrilhidracilo (DPPH) y ácido 2,2’-azino-bis(3-etilbenzotiazolina-6-sulfónico) (ABTS), y el potencial antidiabético se determinó mediante la inhibición de la α-glucosidasa.
Resultados clave: Las hojas de P. padifolia fueron ricas en Ca, Na y Mg y presentaron un bajo contenido de proteínas. El extracto metanólico de hoja (LME) contenía altos niveles de alcaloides, fenoles y terpenos, mientras que los flavonoides estuvieron presentes en bajas concentraciones. Los principales compuestos fenólicos identificados fueron el ácido clorogénico, la escopoletina, el ácido transcinámico y la (-)-epicatequina. Además, un extracto de éter de petróleo de hoja (LPE) contenía principalmente fitol, ácido palmítico, (Z)-7-tetradecenal, ácido(Z)-octadecanoico y ácido linoleico. Las hojas exhibieron alta capacidad antioxidante, inhibiendo los radicales DPPH y ABTS y el LME mostró baja inhibición de la enzima α-glucosidasa.
Conclusiones: Las hojas de Palicourea padifolia tuvieron una rica composición de cationes como Ca, Na y Mg. Además, el LME contenía alcaloides, terpenos, lípidos y fenólicos, que respaldan la potente capacidad antioxidante. Por el contrario, el LME mostró una baja inhibición de la enzima α-glucosidasa.
Descargas
Citas
Abdulkhaleq, L. A., M. A. Assi, M. H. M. Noor, R. Abdullah, M. Z. Saad and Y. H. Taufiq-Yap. 2017. Therapeutic uses of epicatechin in diabetes and cancer. Veterinary World 10(8): 869-872. DOI: https://doi.org/10.14202/vetworld.2017.869-872 DOI: https://doi.org/10.14202/vetworld.2017.869-872
Abdullah, N. H., F. Salim and R. Ahmad. 2016. Chemical constituents of Malaysian U. cordata var. ferruginea and their in vitro α-glucosidase inhibitory activities. Molecules 21(5): 525. DOI: https://doi.org/10.3390/molecules21050525 DOI: https://doi.org/10.3390/molecules21050525
Abhishek, M., B. V. Somashekaraiah and S. M. Dharmesh. 2019. In vivo antidiabetic and antioxidant potential of Psychotria dalzellii in streptozotocin-induced diabetic rats. South African Journal of Botany 121: 494-499. DOI: https://doi.org/10.1016/j.sajb.2018.12.006 DOI: https://doi.org/10.1016/j.sajb.2018.12.006
Ali, E., S. Hussain, N. Hussain, K. U. Kakar, J. M. Shah, S. H. R. Zaidi, M. Jan, K. Zhang, M. A. Khan and M. Imtiaz. 2022. Tocopherol as plant protector: an overview of tocopherol biosynthesis enzymes and their role as antioxidant and signaling molecules. Acta Physiologiae Plantarum 44: 20. DOI: https://doi.org/10.1007/s11738-021-03350-x DOI: https://doi.org/10.1007/s11738-021-03350-x
Alves, V. G., E. da Rosa, L. de Arruda, B. Rocha, C. Bersani Amado, S. Santin, A. Pomini and C. da Silva. 2016. Acute toxicity, antiedematogenic activity, and chemical constituents of Palicourea rigida Kunth. Zeitschrift Für Naturforschung C. 71(3-4): 39-43. DOI: https://doi.org/10.1515/znc-2015-0036 DOI: https://doi.org/10.1515/znc-2015-0036
Alves, V. G., I. T. A. Schuquel, H. D. Ferreira, S. M. O. Santin and C. C. da Silva. 2017. Coumarins from roots of Palicourea rigida. Chemistry of Natural Compounds 53(6): 1157-1159. DOI: https://doi.org/10.1007/s10600-017-2224-8 DOI: https://doi.org/10.1007/s10600-017-2224-8
Amaury de Medeiros, R. and M. Haridasan. 1985. Seasonal variations in the foliar concentrations of nutrients in some aluminum accumulating and non-accumulating species of the Cerrado region of central Brazil. Plant and Soil 88(3): 433-436. DOI: https://doi.org/10.1007/bf02197499 DOI: https://doi.org/10.1007/BF02197499
Aparna, V., K. V. Dileep, P. K. Mandal, P. Karthe, C. Sadasivan and M. Haridas. 2012. Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology and Drug Design 80(3): 434-439. DOI: https://doi.org/10.1111/j.1747-0285.2012.01418.x DOI: https://doi.org/10.1111/j.1747-0285.2012.01418.x
Berger, A., H. Fasshuber, J. Schinnerl, L. Brecker and H. Greger. 2012. Various types of tryptamine-iridoid alkaloids from Palicourea acuminata (=Psychotria acuminata, Rubiaceae). Phytochemistry Letters 5(3): 558-562. DOI: https://doi.org/10.1016/j.phytol.2012.05.013 DOI: https://doi.org/10.1016/j.phytol.2012.05.013
Berger, A., M. K. Kostyan, S. I. Klose, M. Gastegger, E. Lorbeer, L. Brecker and J. Schinnerl. 2015. Loganin and secologanin derived tryptamine–iridoid alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae). Phytochemistry 116: 162-169. DOI: https://doi.org/10.1016/j.phytochem.2015.05.013 DOI: https://doi.org/10.1016/j.phytochem.2015.05.013
Berger, A., A. Preinfalk, W. Robien, L. Brecker, K. Valant-Vetschera and J. Schinnerl. 2016. New reports on flavonoids, benzoic and chlorogenic acids as rare features in the Psychotria alliance (Rubiaceae). Biochemical Systematics and Ecology 66: 145-153. DOI: https://doi.org/10.1016/j.bse.2016.02.027 DOI: https://doi.org/10.1016/j.bse.2016.02.027
Berger, A., E. Tanuhadi, L. Brecker, J. Schinnerl and K. Valant-Vetschera. 2017. Chemodiversity of tryptamine-derived alkaloids in six Costa Rican Palicourea species (Rubiaceae–Palicoureeae). Phytochemistry 143: 124-131. DOI: https://doi.org/10.1016/j.phytochem.2017.07.016 DOI: https://doi.org/10.1016/j.phytochem.2017.07.016
Bischoff, H. 1994. Pharmacology of alpha-glucosidase inhibition. European Journal of Clinical Investigation 24(3): 3-10. DOI: https://doi.org/10.1111/j.1365-2362.1994.tb02249.x DOI: https://doi.org/10.1111/j.1365-2362.1994.tb02249.x
Bokesch, H. R., L. K. Pannell, P. K. Cochran, R. C. Sowder, T. C. McKee and M. Boyd. 2001. A novel anti-HIV macrocyclic peptide from Palicourea condensata. Journal of Natural Products 64(2): 249-250. DOI: https://doi.org/10.1021/np000372l DOI: https://doi.org/10.1021/np000372l
Borgonetti, V., P. Governa, M. Biagi, F. Pellati and N. Galeotti. 2020. Zingiber officinale Roscoe rhizome extract alleviates neuropathic pain by inhibiting neuroinflammation in mice. Phytomedicine 78: 153307. DOI: https://doi.org/10.1016/j.phymed.2020.153307 DOI: https://doi.org/10.1016/j.phymed.2020.153307
Brand-Williams, W., M. E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1): 25-30. DOI: https://doi.org/10.1016/s0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Coelho, E. G., A. C. F. Amaral, J. L. P. Ferreira, A. G. dos Santos, M. L. B. Pinheiro and J. R. A. Silva. 2007. Calcium oxalate crystals and methyl salicylate as toxic principles of the fresh leaves from Palicourea longiflora, an endemic species in the Amazonas state. Toxicon 49(3): 407-409. DOI: https://doi.org/10.1016/j.toxicon.2006.10.003 DOI: https://doi.org/10.1016/j.toxicon.2006.10.003
Contreras, P. S. and J. F. Ornelas. 1999. Reproductive conflicts of Palicourea padifolia (Rubiaceae) a distylous shrub of a tropical cloud forest in Mexico. Plant Systematics and Evolution 219(3): 225-241. DOI: https://doi.org/10.1007/BF00985581 DOI: https://doi.org/10.1007/BF00985581
Cook, D., S. T. Lee, C. M. Taylor, B. Bassüner, F. Riet-Correa, J. A. Pfister and D. R. Gardner. 2014. Detection of toxic monofluoroacetate in Palicourea species. Toxicon 80: 9-16. DOI: https://doi.org/10.1016/j.toxicon.2013.12.003 DOI: https://doi.org/10.1016/j.toxicon.2013.12.003
Covarrubias, S., C. Gutiérrez-Rodríguez, C. González and J. F. Ornelas. 2011. Isolation and characterization of microsatellite markers in distylous Palicourea padifolia (Rubiaceae). American Journal of Botany 98(7): e164-e166. DOI: https://doi.org/10.3732/ajb.1100042 DOI: https://doi.org/10.3732/ajb.1100042
De Mendiburu, F. 2010. Agricolae: Statistical procedures for agricultural research. R package ver. 1.0-9. http://CRAN.Rproject.org/package=agricolae (consulted, July 2024).
De Moura, V. M., F. Q. Ames, J. G. S. Corrêa, M. A. Peixoto, A. M. A. Amorim, A. M. de L. Pomini, J. E. de L. Carvalho, A. L. T. G. Ruiz, C. A. Bersani-Amado and S. M. O. Santin. 2020a. Cytotoxicity and anti-inflammatory effects of the extract, fractions and alkaloids from Palicourea minutiflora (Rubiaceae). Natural Product Research 35(22): 4715-4719. DOI: https://doi.org/10.1080/14786419.2019.1710704 DOI: https://doi.org/10.1080/14786419.2019.1710704
De Moura, V. M., M. A. S. de Ribeiro, J. G. S. Corrêa, M. A. Peixoto, G. K. Souza, D. Morais, P. S. Bonfim-Mendonça, T. I. E. Svidzinski, A. M. Pomini, E. C. Meurer and S. M. O. Santin. 2020b. Minutifloroside, a new bis-iridoid glucoside with antifungal and antioxidant activities and other constituents from Palicourea minutiflora. Journal of the Brazilian Chemical Society 31(3): 505-511. DOI: https://doi.org/10.21577/0103-5053.20190209 DOI: https://doi.org/10.21577/0103-5053.20190209
Do Nascimento, C. A., M. S. Gomes, L. M. Lião, C. M. A. de Oliveira, L. Kato, C. C. da Silva and C. M. A. Tanaka. 2006. Alkaloids from Palicourea coriacea (Cham.) K. Schum. Zeitschrift Für Naturforschung B 61(11): 1443-1446. DOI: https://doi.org/10.1515/znb-2006-1120 DOI: https://doi.org/10.1515/znb-2006-1120
Etchevers, J. D. 1988. Análisis químico de suelos y plantas. Notas de clase. Centro de Edafología, Colegio de Posgraduados. Chapingo, México. 218 pp.
Ferguson, L. R., S. Zhu and P. J. Harris. 2005. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Molecular Nutrition & Food Research 49(6): 585-593. DOI: https://doi.org/10.1002/mnfr.200500014 DOI: https://doi.org/10.1002/mnfr.200500014
Formagio, A. S. N., W. Vilegas, C. R. F. Volobuff, C. A. L. Kassuya, V. P. de Almeida, J. Manfron, z. P. Pereira, M. R. P. Cabral and M. H. Sarragiotto. 2022. Palicourea tomentosa (Aubl.) Borhidi: Microscopy, chemical composition and the analgesic, anti-inflammatory and anti-acetylcholinesterase potential. Journal of Ethnopharmacology 291: 115050. DOI: https://doi.org/10.1016/j.jep.2022.115050 DOI: https://doi.org/10.1016/j.jep.2022.115050
Freitas, P. C. M., L. L. Pucci, M. S. Vieira, R. S. Lino, C. M. A. Oliveira, L. C. Cunha, J. R. Paula and M. C. Valadares. 2011. Diuretic activity and acute oral toxicity of Palicourea coriacea (Cham.) K Schum. Journal of Ethnopharmacology 134(2): 501-503. DOI: https://doi.org/10.1016/j.jep.2010.12.002 DOI: https://doi.org/10.1016/j.jep.2010.12.002
Gnonlonfin, G. J. B., A. Sanni and L. Brimer. 2012. Review Scopoletin - A coumarin phytoalexin with medicinal properties. Critical Reviews in Plant Sciences 31(1): 47-56. DOI: https://doi.org/10.1080/07352689.2011.616039 DOI: https://doi.org/10.1080/07352689.2011.616039
González, C., J. F. Ornelas and L. Jiménez. 2004. Between-year changes in functional gender expression of Palicourea padifolia (Rubiaceae), a distylous, hummingbird-pollinated shrub. Annals of Botany 95(2): 371-378. DOI: https://doi.org/10.1093/aob/mci026 DOI: https://doi.org/10.1093/aob/mci026
Gutiérrez-Rodríguez, C., J. F. Ornelas and F. Rodríguez-Gómez. 2011. Chloroplast DNA phylogeography of a distylous shrub (Palicourea padifolia, Rubiaceae) reveals past fragmentation and demographic expansion in Mexican cloud forests. Molecular Phylogenetics and Evolution 61(3): 603-615. DOI: https://doi.org/10.1016/j.ympev.2011.08.023 DOI: https://doi.org/10.1016/j.ympev.2011.08.023
Heitzman, M. E., C. C. Neto, E. Winiarz, A. J. Vaisberg and G. B. Hammond. 2005. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 66(1): 5-29. DOI: https://doi.org/10.1016/j.phytochem.2004.10.022 DOI: https://doi.org/10.1002/chin.200517286
Hernández-Ramírez, A. M. 2018. Buscando al polinizador eficiente: variación temporal en el gremio de visitantes florales y carga polínica estigmática en la especie distílica Palicourea padifolia (Rubiaceae). Revista Mexicana de Biodiversidad 89(2): 412-420. DOI: https://doi.org/10.22201/ib.20078706e.2018.2.2369 DOI: https://doi.org/10.22201/ib.20078706e.2018.2.2369
Infante-Rodríguez, D. A., C. Landa-Cansigno, A. Gutiérrez-Sánchez, D. L. Murrieta-León, C. Reyes-López, A. B. Castillejos-Pérez, J. E. Pucheta-Fiscal, A. C. Velázquez-Narváez, J. L. Monribot-Villanueva and J. A. Guerrero-Analco. 2022. Análisis fitoquímico y actividad antidiabética, antibacteriana y antifúngica de hojas de Bursera simaruba (Burseraceae). Acta Botanica Mexicana 129: e2109. DOI: https://doi.org/10.21829/abm129.2022.2109 DOI: https://doi.org/10.21829/abm129.2022.2109
Infante-Rodríguez, D. A., J. L. Monribot-Villanueva, K. Mehltreter, G. L. Carrión, J. P. Lachaud, A. C. Velazquéz-Narváez, V. M. Vásquez-Reyes, J. E., Valenzuela-González and J. A. Guerrero-Analco. 2020. Phytochemical characteristics of leaves determine foraging rate of the leaf-cutting ant Atta mexicana (Smith) (Hymenoptera: Formicidae). Chemoecology 30: 147-159. DOI: https://doi.org/10.1007/s00049-020-00306-4 DOI: https://doi.org/10.1007/s00049-020-00306-4
Ishfaq, M., A. Kiran, H. ur Rehman, M. Farooq, N. H. Ijaz, F. Nadeem, I. Azeem and A. Wakeel. 2022. Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany 200: 104909. DOI: https://doi.org/10.1016/j.envexpbot.2022.104909 DOI: https://doi.org/10.1016/j.envexpbot.2022.104909
Islam, M. T., E. S. Ali, S. J. Uddin, S. Shaw, M. A. Islam, M.I. Ahmed, M. Chandra-Shill, U. K. Karmakar, N. S. Yarla, I. N. Khan, M. M Billah, M. D. Pieczynska, G. Zengin, C. Malainer, F. Nicoletti, D. Gulei, I. Berindan-Neagoe, A. Apostolov, M. Banach, A. W. K. Yeung, A. El-Demerdash, J., Xiao, P. Dey, S. Yele, A. Jóźwik, N. Strzałkowska, J. Marchewka, K. R. R. Rengasamy, J. Horbańczuk, M. A. Kamal, M. S. Mubarak, S. K. Mishra, J. A. Shilpi and A. G. Atanasov. 2018. Phytol: a review of biomedical activities. Food and Chemical Toxicology 121: 82-94. DOI: https://doi.org/10.1016/j.fct.2018.08.032 DOI: https://doi.org/10.1016/j.fct.2018.08.032
Juárez-Trujillo, N., J. L. Monribot-Villanueva, M. Alvarado-Olivarez, G. Luna-Solano, G., J. A. Guerrero-Analco and M. Jiménez-Fernández. 2018. Phenolic profile and antioxidative properties of pulp and seeds of Randia monantha Benth. Industrial Crops and Products 124: 53-58. DOI: https://doi.org/10.1016/j.indcrop.2018.07.052 DOI: https://doi.org/10.1016/j.indcrop.2018.07.052
Klein-Júnior, L. C., S. Cretton, P. M. Allard, G. Genta-Jouve, C. S. Passos, J. Salton, P. Bertelli, M. Pupier, D. Jeannerat, Y. Vander Heiden, A. L. Gásper, J. L. Wolfender, P. Christen and A. T. Henriques. 2017. Targeted isolation of monoterpene indole alkaloids from Palicourea sessilis. Journal of Natural Products 80(11): 3032-3037. DOI: https://doi.org/10.1021/acs.jnatprod.7b00681 DOI: https://doi.org/10.1021/acs.jnatprod.7b00681
Kumar, S., R. Sandhir and S. Ojha. 2014. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes 7(1): 560. DOI: https://doi.org/10.1186/1756-0500-7-560 DOI: https://doi.org/10.1186/1756-0500-7-560
Lee, S. T., D. Cook, J. A. Pfister, J. G. Allen, S. M. Colegate, F. Riet-Correa and C. M. Taylor. 2014. Monofluoroacetate-containing plants that are potentially toxic to livestock. Journal of Agricultural and Food Chemistry 62(30): 7345-7354. DOI: https://doi.org/10.1021/jf500563h DOI: https://doi.org/10.1021/jf500563h
Lee, S. H., Y. Ding, X. T. Yan, Y. H. Kim and H. D. Jang. 2013. Scopoletin and scopolin isolated from Artemisia iwayomogi suppress differentiation of osteoclastic macrophage RAW 264.7 cells by scavenging reactive oxygen species. Journal of Natural Products 76(4): 615-620. DOI: https://doi.org/10.1021/np300824h DOI: https://doi.org/10.1021/np300824h
Leszczynska-Borys, H. 1995. Ornamental plants in the customs of the Sierra Norte of Puebla. Acta Horticulturae 391: 251-260. DOI: https://doi.org/10.17660/ActaHortic.1995.391.25 DOI: https://doi.org/10.17660/ActaHortic.1995.391.25
Mariano, L. N. B., T. Boeing, R. C. M. V. A. F. Da Silva, V. Cechinel-Filho, R. Niero, L. M. Da Silva, P. De Souza and S. F. Andrade. 2018. Preclinical evaluation of the diuretic and saluretic effects of (˗)-epicatechin and the result of its combination with standard diuretics. Biomedicine & Pharmacotherapy 107: 520-525. DOI: https://doi.org/10.1016/j.biopha.2018.08.045 DOI: https://doi.org/10.1016/j.biopha.2018.08.045
Marks, D. L., R. Buchsbaum and T. Swain. 1985. Measurement of total protein in plant samples in the presence of tannins. Analytical Biochemistry 147(1): 136-143. DOI: https://doi.org/10.1016/0003-2697(85)90019-3 DOI: https://doi.org/10.1016/0003-2697(85)90019-3
Martins, D. and C. Nunez. 2015. Secondary metabolites from Rubiaceae species. Molecules 20(7): 13422-13495. DOI: https://doi.org/10.3390/molecules200713422 DOI: https://doi.org/10.3390/molecules200713422
Matsuura, H. N. and A. G. Fett-Neto. 2013. The major indole alkaloid N,β-D-glucopyranosyl vincosamide from leaves of Psychotria leiocarpa Cham. & Schltdl. is not an antifeedant but shows broad antioxidant activity. Natural Product Research 27: 402-411. DOI: https://doi.org/10.1080/14786419.2012.715293
Moraes, M. A., B. C. S. Santos, R. L. Fabri, E. Scio, M. S. Alves, M. P. Rodarte, G. Del-Vechio-Vieria, A. L. Dos Santos de Mantos Araújo, A. Da Luz André de Araújo and O. V. De Sousa. 2017. Pharmacological potential of Palicourea rigida Kunth: a possible participation of flavonoid compounds. Journal of Medicinal Plants Research 11(10): 194-206. DOI: https://doi.org/10.5897/JMPR2016.6320 DOI: https://doi.org/10.5897/JMPR2016.6320
Moreno, B. P., L. L. R. Fiorucci, M. R. B. Do Carmo, M. H. Sarragiotto and D. C. Baldoqui. 2014. Terpenoids and a coumarin from aerial parts of Psychotria vellosiana Benth. (Rubiaceae). Biochemical Systematics and Ecology 56: 80-82. DOI: https://doi.org/10.1016/j.bse.2014.04.013 DOI: https://doi.org/10.1016/j.bse.2014.04.013
NIST. 2019. National Institute of Standards and Technology (NIST). www.nist.gov (consulted November, 2019).
Ohashi, L. H., D. C. Gontijo, M. F. A. Do Nascimento, L. F. Margalho, G. C. Brandão and A. B. Oliveira. 2021. Extraction and fractionation effects on antiplasmodial activity and phytochemical composition of Palicourea hoffmannseggiana. Planta Medica International Open 8(01): 34-42. DOI: https://doi.org/10.1055/a-1375-6456 DOI: https://doi.org/10.1055/a-1375-6456
Ornelas, J. F., L. Jiménez, C. González and A. Hernández. 2004. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. I. Hummingbirds’ effectiveness as pollen vectors. American Journal of Botany 91(7): 1052-1060. DOI: https://doi.org/10.3732/ajb.91.7.1052 DOI: https://doi.org/10.3732/ajb.91.7.1052
Palariya, D., A. Sigh, A. Dhami, R. Kumar, O. Prakash, A. Pant and R. Kumar. 2019.Phytochemical analysis and biological activities of leaves and bark hexane extracts of Premna mucronata Roxb. collected from Kumaun hills of Uttarakhand. International Journal of Herbal Medicine 7(5): 35-44.
Parvin, R., S. V. Pande and T. A. Venkitasubramanian. 1965. On the colorimetric biuret method of protein determination. Analytical Biochemistry 12(2): 219-229. DOI: https://doi.org/10.1016/0003-2697(65)90085-0 DOI: https://doi.org/10.1016/0003-2697(65)90085-0
Pinto, M. E. F., L. Y. Chan, J. Koehbach, S. Devi, C. Gründemann, C. W. Gruber, M. Gomes, V. S. Bolzani, E. M. Cilli and D. J. Craik. 2021. Cyclotides from Brazilian Palicourea sessilis and their effects on human lymphocytes. Journal of Natural Products 84(1): 81-90. DOI: https://doi.org/10.1021/acs.jnatprod.0c01069 DOI: https://doi.org/10.1021/acs.jnatprod.0c01069
Poklar-Ulrih, N., I. Prislan and B. Cigić. 2021. Coumaric and cinnamic acids in food. In: Xiao, J., S. D. Sarker and Y. Asakawa (eds.). Handbook of dietary phytochemicals. Springer Nature. Singapore, Singapore. Pp. 1105-1143. DOI: https://doi.org/10.1007/978-981-15-4148-3_24 DOI: https://doi.org/10.1007/978-981-15-4148-3_24
Prasath, K. G., H. Tharani, M. S. Kumar and S. K. Pandian. 2020. Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Frontiers in Microbiology 11: 864. DOI: https://doi.org/10.3389/fmicb.2020.00864 DOI: https://doi.org/10.3389/fmicb.2020.00864
R Core Team. 2020. R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/ (consulted May, 2024).
Ramírez-Reyes, T. I., Á. S. Aguilar-Colorado, D. L. Murrieta-León, L. S. Licona-Velázquez, I. Bonilla-Landa, C. Durán-Espinosa, S. Avendaño-Reyes, J. L. Monribot-Villanueva and J. A. Guerrero-Analco. 2019. Identification of antibacterial phenolics in selected plant species from Mexican cloud forest by mass spectrometry dereplication. Chemistry & Biodiversity 216(4): e1800603. DOI: https://doi.org/10.1002/cbdv.201800603 DOI: https://doi.org/10.1002/cbdv.201800603
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine 26(9-10): 1231-1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Ree, R. H. 1997. Pollen flow, fecundity, and the adaptive significance of heterostyly in Palicourea padifolia (Rubiaceae). Biotropica 29(3): 298-308. DOI: https://doi.org/10.1111/j.1744-7429.1997.tb00431.x DOI: https://doi.org/10.1111/j.1744-7429.1997.tb00431.x
Sadino, A., A. Muhtadi and Y. Susilawati. 2018. A review on medicinal plants with antidiabetic activity from Rubiaceae family. International Research Journal of Pharmacy 9(7): 36-41. DOI: https://doi.org/10.7897/2230-8407.097122
Sandra, U. I., A. V. Ishmael, O. Raphael, I. Cookey, G. Sani, N. Godfrey and E. E. Edet. 2018. Chromatographic assay, antimicrobial analysis and structural elucidation of bioactive compounds of Palicourea croceiodes leaves extract. American Journal of Biological Chemistry 5(2): 6-14.
Sarkar, S., M. Mondal, P. Ghosh, M. Saha and S. Chatterjee. 2020. Quantification of total protein content from some traditionally used edible plant leaves: A comparative study. Journal of Medicinal Plant Studies 8(4): 166-170. DOI: https://doi.org/10.22271/plants.2020.v8.i4c.1164 DOI: https://doi.org/10.22271/plants.2020.v8.i4c.1164
Singleton, V. L., R. Orthofer and R. M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 14: 152-178. DOI: https://doi.org/doi:10.1016/s0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Tambe, V. D. and R. S. Bhambar. 2014. Phytochemical screening and anthelmintic activity of wood and leaves of Hibiscus tiliaceus Linn. World Journal of Pharmacy and Pharmaceutical Sciences 3: 880-889.
Taylor, C. M. 1989. Revision of Palicourea (Rubiaceae) in Mexico and Central America. Systematic Botany Monographs 26: 1-102. DOI: https://doi.org/10.2307/25027720
Thiers, B. M. 2024. Index Herbariorum. https://sweergum.nybg.org/science/ih/ (consulted November, 2024).
Tresmondi, F., A. Nogueira, E. Guimarães and S. R. Machado. 2015. Morphology, secretion composition, and ecological aspects of stipular colleters in Rubiaceae species from tropical forest and savanna. The Science of Nature 102: 73. DOI: https://doi.org/10.1007/s00114-015-1320-5
Tucker, J. M. and D. M. Townsend. 2005. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomedicine & Pharmacotherapy 59(7): 380-387. DOI: https://doi.org/ 10.1016/j.biopha.2005.06.005 DOI: https://doi.org/10.1016/j.biopha.2005.06.005
Tundis, R., M. R. Loizzo and F. Menichini. 2010. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry 10(4): 315-331. DOI: https://doi.org/ 10.2174/138955710791331007 DOI: https://doi.org/10.2174/138955710791331007
Udegbunam, I. S., V. I. E. Ajiwe, A. M. Omovo and S. Ghibbon. 2017. The chemical constituents and bioactivity of ethyl acetate (leaf) extract of Palicourea croceiodes International Journal of Advanced Research in Chemical Science 4(7): 32-37. DOI: http://dx.doi.org/10.20431/2349-0403.0407005 DOI: https://doi.org/10.20431/2349-0403.0407005
Valverde, J., G. Tamayo and M. Hesse. 1999. β-Carboline monoterpenoid glucosides from Palicourea adusta. Phytochemistry 52(8): 1485-1489. DOI: http://dx.doi.org/10.1016/s0031-9422(99)00215-0 DOI: https://doi.org/10.1016/S0031-9422(99)00215-0
Wang, Z., C. Liang, G. LI, C. YU and M. Yin. 2007. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacologica Sinica 28(3): 315-326. DOI: http://dx.doi.org/10.1111/j.1745-7254.2007.00512.x DOI: https://doi.org/10.1111/j.1745-7254.2007.00512.x
WFO. 2024. World Flora Online (WFO) Plant List. WFO Consortium. https://wfoplantlist.org/ (consulted November, 2024).
WHO. 2013. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization (WHO) 102.
Williams-Linera, G. and F. Herrera. 2003. Folivory, herbivores, and environment in the understory of a tropical montane cloud forest. Biotropica 35(1): 67. DOI: http://dx.doi.org/10.1646/0006-3606(2003)035[0067:fhaeit]2.0.co;2 DOI: https://doi.org/10.1111/j.1744-7429.2003.tb00263.x
Xia, Y., Y. Dai, Q. Wang and H. Liang. 2007. Determination of scopoletin in rat plasma by high performance liquid chromatographic method with UV detection and its application to a pharmacokinetic study. Journal of Chromatography B 857(2): 332-336. DOI: http://dx.doi.org/10.1016/j.jchromb.2007.07.023 DOI: https://doi.org/10.1016/j.jchromb.2007.07.023
Zayed, M. Z., F. B. Ahmad, W. Ho and S. L. Pang. 2014. GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences 6(9): 123-127.
Zuo, J., W. Tang and Y. Xu. 2015. Anti-Hepatitis B virus activity of chlorogenic acid and its related compounds. In: Preedy, V. R. (eds.). Coffee in Health and Disease Prevention. Academic Press. Cambridge, USA. Pp. 607-613. DOI: http://dx.doi.org/10.1016/b978-0-12-409517-5.00068-1 DOI: https://doi.org/10.1016/B978-0-12-409517-5.00068-1
![](https://abm.ojs.inecol.mx/public/journals/1/submission_2405_1860_coverImage_es_ES.jpg)
Publicado
Cómo citar
-
Resumen348
-
PDF 155
-
EPUB 4
Número
Sección
Licencia
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Acta Botanica Mexicana reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto. Acta Botanica Mexicana no realiza cargos a los autores por enviar y procesar artículos para su publicación.
Todos los textos publicados por Acta Botanica Mexicana –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Acta Botanica Mexicana (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en Acta Botanica Mexicana.
Para todo lo anterior, el corrector de originales le solicitará junto con la revisión de galeras, que expida su Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Esta carta se debe enviar por correo electrónico en archivo pdf al correo: acta.botanica@inecol.mx (Carta-Cesión de Propiedad de Derechos de Autor).