Actividad antioxidante y antibacteriana de extractos obtenidos del micelio de Pleurotus ostreatus cultivado con residuos agroindustriales

Autores/as

  • Brisa del Mar Torres-Martínez SECIHTI - Centro de Investigación en Alimentación y Desarrollo, A.C.
  • Rey David Vargas-Sánchez SECIHTI - Centro de Investigación en Alimentación y Desarrollo, A.C.
  • Gastón Ramón Torrescano-Urrutia SECIHTI - Centro de Investigación en Alimentación y Desarrollo, A.C.
  • Armida Sánchez-Escalante SECIHTI - Centro de Investigación en Alimentación y Desarrollo, A.C.

DOI:

https://doi.org/10.21829/abm132.2025.2384

Palabras clave:

bioactividad, contenido de polifenoles, desechos, hongos, micelio

Resumen

Antecedentes y Objetivos: Pleurotus ostreatus (PO) es un hongo comestible cuyo consumo se ha incrementado debido a su importante contenido de nutrientes. Es un hongo saprofito que puede adquirir nutrientes dependiendo del sustrato en el que se cultiva, y es bien conocido que los residuos agroindustriales son una fuente importante de nutrientes. Este trabajo tiene como objetivo evaluar el efecto de los residuos de grano de café usado (SCG) y cáscara de papa (PPR) como sustrato sobre el contenido de polifenoles y la actividad antioxidante y antimicrobiana del extracto hidroalcohólico de micelio de PO.

Métodos: El cultivo de PO se realizó con cuatro sustratos que incluían paja de trigo sustituida con 10, 15 y 20% de una mezcla de 1:1 de residuos (SCG y PPR). A partir del micelio obtenido se generaron extractos hidroalcohólicos en los que se determinó el contenido fenólico, actividad antioxidante (actividad antirradical y poder reductor) y antibacteriana frente a patógenos transmitidos por alimentos (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli y Salmonella typhimurium).

Resultados clave: Los resultados muestran que la mayor actividad antirradical contra DPPH y la cuantificación de fenoles se presentó en el sustrato con 10, 15 y 20% de SCG y PPR; el sustrato que contenía 20% tuvo un mayor contenido de flavonoides y actividad antirradical ABTS. Sin embargo, no hubo diferencias en el contenido de ácido clorogénico entre los sustratos. Todos los tratamientos también exhibieron actividad antibacteriana contra los patógenos evaluados, principalmente contra S. aureus.

Conclusiones: SCG y PPR incrementaron el contenido de polifenoles y la actividad antioxidante y antibacteriana en el extracto hidroalcohólico del micelio de PO, convirtiéndolos en sustratos efectivos para el cultivo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ainsworth, E. A. and K. M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2: 875-877. DOI: https://doi.org/10.1038/nprot.2007.102 DOI: https://doi.org/10.1038/nprot.2007.102

Akyüz, M. and S. Kirbag. 2009. Antimicrobial activity of Pleurotus eryngii var. ferulae grown on various agro-wastes. Eurasian Journal of Biosciences 3: 58-63. DOI: https://doi.org/10.5053/ejobios.2009.3.0.8

Ballesteros, L. F., J. A. Teixeira and S. I. Mussatto. 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology 7: 3493-3503. DOI: https://doi.org/10.1007/s11947-014-1349-z DOI: https://doi.org/10.1007/s11947-014-1349-z

Bellettini, M. B., F. A. Fiorda, H. A. Maieves, G. L. Teixeira, S. Ávila, P. S. Hornung, A. M. Júnior and R. H. Ribani. 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences 26(4): 633-646. DOI: https://doi.org/10.1016/j.sjbs.2016.12.005 DOI: https://doi.org/10.1016/j.sjbs.2016.12.005

Cardoso, R. V. C., Â. Fernandes, M. Beatriz, P. P. Oliveira, R. C. Calhelha, L. Barros, A. Martins and I. C. F. R. Ferreira. 2017. Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus. Food & Function 8: 2155-2164. DOI: https://doi.org/10.1039/C7FO00515F DOI: https://doi.org/10.1039/C7FO00515F

Chang, S. T. 2009. Overview of mushroom cultivation and utilization as functional foods. In: Cheung, P. C. K. (ed.). Mushrooms as functional foods. John Wiley & Sons, Inc. New Jersey, USA. Pp. 1-33. DOI: https://doi.org/10.1002/9780470367285.ch1 DOI: https://doi.org/10.1002/9780470367285.ch1

González-Palma, I., H. B. Escalona-Buendía, E. Ponce-Alquicira, M. Téllez-Téllez, V. K. Gupta, G. Díaz-Godínez and J. Soriano-Santos. 2016. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology 7: 1099. DOI: https://doi.org/10.3389/fmicb.2016.01099 DOI: https://doi.org/10.3389/fmicb.2016.01099

Griffiths, D. W., H. Bain and M. F. B. Dale. 1992. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze‐dried potato tubers. Journal of the Science of Food and Agriculture 58(1): 41-48. DOI: https://doi.org/10.1002/jsfa.2740580108 DOI: https://doi.org/10.1002/jsfa.2740580108

Helal, M. M., T. A. El-Adawy, A. E. El-Beltagy, A. A. El-Bedawey and S. M. El-Youssef. 2020. Evaluation of potato peel extract as a source of antioxidant and antimicrobial substances. Menoufia Journal of Food Dairy Sciences 5(6): 79-90. DOI: https://doi.org/10.21608/mjfds.2020.171473 DOI: https://doi.org/10.21608/mjfds.2020.171473

Hsu, J. Y., M. H. Chen, Y. S. Lai and S. D. Chen. 2022. Antioxidant profile and biosafety of white truffle mycelial products obtained by solid-state fermentation. Molecules 27(1): 109. DOI: https://doi.org/10.3390/molecules27010109 DOI: https://doi.org/10.3390/molecules27010109

Işıl Berker, K., K. Güçlü, İ. Tor, B. Demirata and R. Apak. 2010. Total antioxidant capacity assay using optimized ferricyanide/Prussian blue method. Food Analytical Methods 3(3): 154-168. DOI: https://doi.org/10.1007/S12161-009-9117-9 DOI: https://doi.org/10.1007/s12161-009-9117-9

Jorgensen, J. H. and J. D. Turnidge. 2015. Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen, J. H., K. C. Carroll, G. Funke, M. A. Pfaller, M. L. Landry, S. S. Richter and D. W. Warnock (eds.). Manual of clinical microbiology. John Wiley & Sons, Inc. New Jersey, USA. Pp. 1253-1273. DOI: https://doi.org/10.1128/9781555817381.ch71

Kalyoncu, F., M. Oskay and H. Kayalar. 2010a. Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology 1(3): 195-199. DOI: https://doi.org/10.1080/21501203.2010.511292 DOI: https://doi.org/10.1080/21501203.2010.511292

Kalyoncu, F., M. Oskay, H. Sağlam, T. F. Erdoğan and A. U. Tamer. 2010b. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. Journal of Medicine Food 13(2): 415-419. DOI: https://doi.org/10.1089/jmf.2009.0090 DOI: https://doi.org/10.1089/jmf.2009.0090

Krupodorova, T., V. Barshteyn, V. Tsygankova, M. Sevindik and Y. Blume. 2024. Strain-specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMC Biotechnology 24(1): 9. DOI: https://doi.org/10.1186/s12896-024-00834-9 DOI: https://doi.org/10.1186/s12896-024-00834-9

Lee, Y. L., G. W. Huang, Z. C. Liang and J. L. Mau. 2007. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT - Food Science and Technology 40(5): 823-833. DOI: https://doi.org/10.1016/j.lwt.2006.04.002 DOI: https://doi.org/10.1016/j.lwt.2006.04.002

Mokochinski, J. B., B. G. C. López, V. Sovrani, H. S. Dalla Santa, P. P. González-Borrero, A. C. H. F. Sawaya, E. M. Schmidt, M. N. Eberlin and Y. R. Torres. 2015. Production of Agaricus brasiliensis mycelium from food industry residues as a source of antioxidants and essential fatty acids. International Journal of Food Science and Technology 50(9): 2052-2058. DOI: https://doi.org/10.1111/ijfs.12861 DOI: https://doi.org/10.1111/ijfs.12861

Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology 26(2): 211-219.

Morris, H. J., Y. Beltrán, G. Llauradó, P. L. Batista, I. Perraud-Gaime, N. García, S. Moukha, R. C. Bermúdez, P. Cos, E. Hernández and J. C. Diez. 2017. Mycelia from Pleurotus sp. (oyster mushroom): a new wave of antimicrobials, anticancer and antioxidant bio-ingredients. International Journal of Phytocosmetics and Natural Ingredients 4(1): 1-3. DOI: https://doi.org/10.15171/ijpni.2017.03 DOI: https://doi.org/10.15171/ijpni.2017.03

Muflihah, Y. M., G. Gollavelli and Y. C. Ling. 2021. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants 10(10): 1530. DOI: https://doi.org/10.3390/antiox10101530 DOI: https://doi.org/10.3390/antiox10101530

Mussatto, S. I., L. F. Ballesteros, S. Martins and J. A. Teixeira. 2011. Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology 83: 173-179. DOI: https://doi.org/10.1016/j.seppur.2011.09.036 DOI: https://doi.org/10.1016/j.seppur.2011.09.036

Nguyen, T. M. and S. L. Ranamukhaarachchi. 2020. Effect of different culture media, grain sources and alternate substrates on the mycelial growth of Pleurotus eryngii and Pleurotus ostreatus. Pakistan Journal of Biological Sciences 23(3): 223-230. DOI: https://doi.org/10.3923/pjbs.2020.223.230 DOI: https://doi.org/10.3923/pjbs.2020.223.230

Oyetayo, O. 2013. Micro and macronutrient properties of Pleurotus ostreatus (Jacq: Fries) cultivated on different wood substrates. Jordan Journal of Biological Sciences 6(3): 223-226. DOI: https://doi.org/10.12816/0001537 DOI: https://doi.org/10.12816/0001537

Petre, M. and V. Petre. 2016. Biotechnology of mushroom growth through submerged cultivation. In: Petre, M. (ed.). Mushroom biotechnology. Academic Press. New Jersey, USA. Pp. 1-18. DOI: https://doi.org/10.1016/B978-0-12-802794-3.00001-1

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10): 1231-1237. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

Reis, F. S., A. Martins, L. Barros and I. C. F. R. Ferreira. 2012. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food and Chemical Toxicology 50(5): 1201-1207. DOI: https://doi.org/10.1016/j.fct.2012.02.013 DOI: https://doi.org/10.1016/j.fct.2012.02.013

Rodríguez-Estrada, A. E. and J. Pecchia, J. 2017. Cultivation of Pleurotus ostreatus. In: Zied, D. C. and A. Pardo-Giménez (eds.). Edible and medicinal mushrooms: technology and applications. John Wiley & Sons, Inc. New Jersey, USA. Pp. 339-360. DOI: https://doi.org/10.1002/9781119149446.ch16

Sánchez, A., F. Ysunza, M. J. Beltrán-García and M. Esqueda. 2002. Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding. Journal of Agriculture and Food Chemistry 50(9): 2537-2542. DOI: https://doi.org/10.1021/jf011308s DOI: https://doi.org/10.1021/jf011308s

Sánchez, C. 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology 85(5): 1321-1337. DOI: https://doi.org/10.1007/s00253-009-2343-7 DOI: https://doi.org/10.1007/s00253-009-2343-7

Shahidi, F. and Y. Zhong. 2015. Measurement of antioxidant activity. Journal of Functional Foods 18B: 757-781. DOI: https://doi.org/10.1016/j.jff.2015.01.047 DOI: https://doi.org/10.1016/j.jff.2015.01.047

Singh, L., S. Kaur, P. Aggarwal and N. Kaur. 2022. Characterisation of industrial potato waste for suitability in food applications. International Journal of Food Science and Technology 58(5): 2686-2694. DOI: https://doi.org/10.1111/ijfs.16023 DOI: https://doi.org/10.1111/ijfs.16023

Singhania, R. R., A. K. Patel, C. R. Soccol and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochemical Engineering Journal 44(1): 13-18. DOI: https://doi.org/10.1016/j.bej.2008.10.019 DOI: https://doi.org/10.1016/j.bej.2008.10.019

Subramaniam, S., V. Sabaratnam, U. R. Kuppusamy and Y. S. Tan. 2014. Solid-substrate fermentation of wheat grains by mycelia of indigenous species of the genus Ganoderma (higher Basidiomycetes) to enhance the antioxidant activities. International Journal of Medicine Mushrooms 16(3): 259-267. DOI: https://doi.org/10.1615/intjmedmushr.v16.i3.60 DOI: https://doi.org/10.1615/IntJMedMushr.v16.i3.60

Valverde, M. E., T. Hernández-Pérez and O. Paredes-López. 2015. Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology 2015: 376387. DOI: https://doi.org/10.1155/2015/376387 DOI: https://doi.org/10.1155/2015/376387

Vamanu, E. 2012. In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules 17(4): 3653-3671. DOI: https://doi.org/10.3390%2Fmolecules17043653 DOI: https://doi.org/10.3390/molecules17043653

Vamanu, E., M. Ene, D. Pelinescu, I. Sarbu, A. Vamanu and S. Nita. 2011. Determination of Antioxidant and Antimicrobial Properties of Alcoholic Extract from Pleurotus ostreatus M2191 Mycelium Obtained in the Presence of Various Nitrogen Sources. Revista de Chimie 62(12): 1189-2011.

Yılmaz, A., S. Yıldız, C. Kılıç and Z. Can. 2017. Total phenolics, flavonoids, tannin contents and antioxidant properties of Pleurotus ostreatus cultivated on different wastes and sawdust. International Journal of Secondary Metabolites 4(1): 1-9. DOI: https://doi.org/10.21448/IJSM.252052 DOI: https://doi.org/10.21448/ijsm.252052

Zhishen, J., T. Mengcheng and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4): 555-559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2 DOI: https://doi.org/10.1016/S0308-8146(98)00102-2

Descargas

Publicado

2025-04-07

Cómo citar

Torres-Martínez, B. del M., Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., & Sánchez-Escalante, A. (2025). Actividad antioxidante y antibacteriana de extractos obtenidos del micelio de Pleurotus ostreatus cultivado con residuos agroindustriales. Acta Botanica Mexicana, (132). https://doi.org/10.21829/abm132.2025.2384
Metrics
Vistas/Descargas
  • Resumen
    78
  • PDF
    44
  • EPUB
    9

Número

Sección

Hongos

Métrica

Artículos más leídos del mismo autor/a