Efectos del tamaño del fruto en la germinación de semillas de Psittacanthus mayanus (Loranthaceae)
DOI:
https://doi.org/10.21829/abm132.2025.2424Palabras clave:
cotiledón, endospermona, muérdago, parasitismo, visciResumen
Antecedentes y Objetivos: Las semillas de muérdago germinan fácilmente después de que los dispersores de semillas las retiran del exocarpio. Si bien las consecuencias de la dispersión dirigida por aves desde la perspectiva de las interacciones mutualistas entre muérdago y aves están bien estudiadas, los efectos de la variación del tamaño de los frutos en los procesos de germinación de las semillas han recibido una atención limitada. Aquí investigamos las diferentes fases de la germinación de semillas de muérdagos Psittacanthus unidas manualmente, desde la adhesión de la semilla hasta la formación haustorial temprana, para comprender mejor el proceso de germinación de la unidad de semilla (embrión y cotiledones).
Métodos: Recolectamos frutos maduros completamente desarrollados de plantas de muérdago de Psittacanthus mayanus (Loranthaceae) que crecían en árboles hospederos de Lysiloma divaricatum (Fabaceae). Los medimos (largo y ancho del fruto y largo de los pedicelos cupulares), los pesamos y luego los usamos en el experimento de germinación. Para este experimento, retiramos manualmente el exocarpio de los frutos maduros y colocamos las semillas liberadas en palos rectangulares de madera, asegurándolas con su propia viscina. Las semillas fueron monitoreadas diariamente durante 100 días bajo condiciones ambientales comunes.
Resultados clave: Las semillas de Psittacanthus mayanus mostraron una alta tasa de germinación, completando el proceso en poco menos de dos semanas en promedio. La germinación fue asincrónica entre semillas, con una variación considerable en el tiempo que tardó cada una en germinar. Entre las características morfológicas evaluadas, solo el ancho del fruto afectó significativamente el proceso de germinación. Específicamente, el ancho del fruto influyó en la probabilidad de germinación de las semillas, el tiempo que tardaron en germinar y el número de cotiledones que desarrollaron. Las semillas de frutos más anchos mostraron mayor probabilidad de germinación, pero desarrollaron menos cotiledones.
Conclusiones: Nuestros hallazgos sugieren que el ancho del fruto podría ser un rasgo importante que influye en el éxito reproductivo de esta especie de muérdago.
Descargas
Citas
Arce-Acosta, I., H. Suzán-Azpiri and O. García-Rubio. 2016. Biotic factors associated with the spatial distribution of the mistletoe Psittacanthus calyculatus in a tropical deciduous forest of central Mexico. Botanical Sciences 94(1): 89-96. DOI: https://doi.org/10.17129/botsci.263 DOI: https://doi.org/10.17129/botsci.263
Aukema, J. E. and C. Martínez del Rio. 2002. Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83(12): 3489-3496. DOI: https://doi.org/10.1890/0012-9658(2002)083[3489:WDAFEB]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2002)083[3489:WDAFEB]2.0.CO;2
Barga, S., T. E. Dilts and E. A. Leger. 2017. Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 185: 437-452. DOI: https://doi.org/10.1007/s00442-017-3958-5 DOI: https://doi.org/10.1007/s00442-017-3958-5
Davidar, P. 1983. Birds and neotropical mistletoes: effects on seedling recruitment. Oecologia 60: 271-273. DOI: https://doi.org/10.1007/BF00379532 DOI: https://doi.org/10.1007/BF00379532
De Vega, C., P. L. Ortiz and M. Arista. 2024. Host-driven phenotypic and phenological differentiation in sympatric races of a parasitic plant. Flora 320: 152617. DOI: https://doi.org/10.1016/j.flora.2024.152617 DOI: https://doi.org/10.1016/j.flora.2024.152617
Díaz Infante, S., C. Lara, M. del C. Arizmendi, L. E. Eguiarte and J. F. Ornelas. 2016. Reproductive ecology and isolation of Psittacanthus calyculatus and P. auriculatus mistletoes (Loranthaceae). PeerJ 4: e2491. DOI: https://doi.org/10.7717/peerj.2491 DOI: https://doi.org/10.7717/peerj.2491
Fadini, R. F., C. S. Caires, G. A. Dettke, M. O. T. Menezes and F. E. Fontúrbel. 2024. Conservation opportunities for rare and endemic tropical mistletoes. Flora 317: 152555. DOI: https://doi.org/10.1016/j.flora.2024.152555 DOI: https://doi.org/10.1016/j.flora.2024.152555
Fontúrbel, F. E. 2020. Mistletoes in a changing world: a premonition of a non-analog future? Botany 98(9): 479-488. DOI: https://doi.org/10.1139/cjb-2019-019 DOI: https://doi.org/10.1139/cjb-2019-0195
Gómez, J. M. 2004. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58(1): 71-80. DOI: https://doi.org/10.1111/j.0014-3820.2004.tb01574.x DOI: https://doi.org/10.1111/j.0014-3820.2004.tb01574.x
Gonzáles, W. L., L. H. Suárez, R. Guiñez and R. Medel. 2007. Phenotypic plasticity in the holoparasitic mistletoe Tristerix aphyllus (Loranthaceae): consequences of trait variation for successful establishment. Evolutionary Ecology 21: 431-444. DOI: https://doi.org/10.1007/s10682-006-9111-2 DOI: https://doi.org/10.1007/s10682-006-9111-2
Guerra, T. J., M. A. Pizo and W. R. Silva. 2018. Host specificity and aggregation for a widespread mistletoe in Campo Rupestre vegetation. Flora 238: 148-154. DOI: https://doi.org/10.1016/j.flora.2016.12.011 DOI: https://doi.org/10.1016/j.flora.2016.12.011
Howell, T. R. 1972. Birds of the lowland pine savannah of northeastern Nicaragua. The Condor 74(3): 316-340. DOI: https://doi.org/10.2307/1366592 DOI: https://doi.org/10.2307/1366592
Ibarra-Laclette, E., C. A. Venancio-Rodríguez, A. A. Vásquez-Aguilar, A. G. Alonso-Sánchez, C. A. Pérez-Torres, E. Villafán, S. Ramírez-Barahona, S. Galicia, V. Sosa, E. A. Rebollar, C. Lara, A. González-Rodríguez, F. Díaz-Fleischer and J. F. Ornelas. 2022. Transcriptional basis for haustorium formation and host establishment in hemiparasitic Psittacanthus schiedeanus mistletoes. Frontiers in Genetics 13: 929490. DOI: https://doi.org/10.3389/fgene.2022.929490 DOI: https://doi.org/10.3389/fgene.2022.929490
Jones, K. W. and D. C. Sanders. 1987. The influence of soaking pepper seed in water or potassium salt solutions on germination at three temperatures. Journal of Seed Technology 11(1): 97-102.
Kidson, R. and M. Westoby. 2000. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125: 11-17. DOI: https://doi.org/10.1007/PL00008882 DOI: https://doi.org/10.1007/PL00008882
Kuijt, J. 2009. Monograph of Psittacanthus (Loranthaceae). Systematic Botany Monographs 86: 1-361.
Ladley, J. J. and D. Kelly. 1996. Dispersal, germination and survival of New Zealand mistletoes (Loranthaceae): dependence on birds. New Zealand Journal of Ecology 20(1): 69-79.
Lara, C., G. Pérez and J. F. Ornelas. 2009. Provenance, guts, and fate: field and experimental evidence in a host-mistletoe-bird system. Écoscience 16(3): 399-407. DOI: https://doi.org/10.2980/16-3-3235 DOI: https://doi.org/10.2980/16-3-3235
Lara, C., L. Xicohténcatl-Lara and J. F. Ornelas. 2021. Differential reproductive responses to contrasting host species and localities in Psittacanthus calyculatus (Loranthaceae) mistletoes. Plant Biology 23(4): 603-611. DOI: https://doi.org/10.1111/plb.13266 DOI: https://doi.org/10.1111/plb.13266
Licona-Vera, Y., A. E. Ortiz-Rodríguez, A. A. Vásquez-Aguilar and J. F. Ornelas. 2018. Lay mistletoes on the Yucatán Peninsula: post-glacial expansion and genetic differentiation of Psittacanthus mayanus (Loranthaceae). Botanical Journal of the Linnean Society 186(3): 334-360. DOI: https://doi.org/10.1093/botlinnean/box098 DOI: https://doi.org/10.1093/botlinnean/box098
López de Buen, L. and J. F. Ornelas. 1999. Frugivorous birds, host selection and the mistletoe Psittacanthus schiedeanus, in central Veracruz, Mexico. Journal of Tropical Ecology 15(3): 329-340. DOI: https://doi.org/10.1017/S0266467499000851 DOI: https://doi.org/10.1017/S0266467499000851
López de Buen, L. and J. F. Ornelas. 2002. Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in Central Veracruz, Mexico. American Journal of Botany 89(1): 95-102. DOI: https://doi.org/10.3732/ajb.89.1.95 DOI: https://doi.org/10.3732/ajb.89.1.95
Lozano-Isla, F., O. Benites-Alfaro and M. F. Pompelli. 2019. GerminaR: an R package for germination analysis with the interactive web application “GerminaQuant for R”. Ecological Research 34(2): 339-346. DOI: https://doi.org/10.1111/1440-1703.1275 DOI: https://doi.org/10.1111/1440-1703.1275
Martínez del Rio, C., A. Silva, R. Medel and M. Hourdequin. 1996. Seed dispersers as disease vectors: bird transmission of mistletoe seeds to plant hosts. Ecology 77(3): 912-921. DOI: https://doi.org/10.2307/2265511 DOI: https://doi.org/10.2307/2265511
Monteiro, R. E., R. P. Martins and K. Yamamoto. 1992. Host specificity and seed dispersal of Psittacanthus robustus (Loranthaceae) in south-east Brazil. Journal of Tropical Ecology 8(3): 307-314. DOI: https://doi.org/10.1017/S026646740000657X DOI: https://doi.org/10.1017/S026646740000657X
Murali, K. S. 1997. Patterns of seed size, germination and seed viability of tropical tree species in Southern India. Biotropica 29(3): 271-279. DOI: https://doi.org/10.1111/j.1744-7429.1997.tb00428.x DOI: https://doi.org/10.1111/j.1744-7429.1997.tb00428.x
Norton, D. A. and J. J. Ladley. 1998. Establishment and early growth of Alepis flavida in relation to Nothofagus solandri branch size. New Zealand Journal of Botany 36(2): 213-217. DOI: https://doi.org/10.1080/0028825X.1998.9512562 DOI: https://doi.org/10.1080/0028825X.1998.9512562
Norton, D. A., J. Ladley and A. D. Sparrow. 2002. Host provenance effects on germination and establishment of two New Zealand mistletoes (Loranthaceae). Functional Ecology 16(5): 657-663. DOI: https://doi.org/10.1046/j.1365-2435.2002.00663.x DOI: https://doi.org/10.1046/j.1365-2435.2002.00663.x
Ornelas, J. F. and A. A. Vásquez-Aguilar. 2023. Host-mediated effects on fruit size variation of the hemiparasitic mistletoe Psittacanthus schiedeanus (Loranthaceae). Acta Botanica Mexicana 130: e2134. DOI: https://doi.org/10.21829/abm130.2023.2134 DOI: https://doi.org/10.21829/abm130.2023.2134
Ornelas, J. F., Y. Licona-Vera and A. E. Ortiz-Rodriguez. 2018. Contrasting responses of generalized/specialized mistletoe-host interactions under climate change. Écoscience 25(3): 223-234. DOI: https://doi.org/10.1080/11956860.2018.1439297 DOI: https://doi.org/10.1080/11956860.2018.1439297
Ornelas, J. F., J. M. García, A. E. Ortiz-Rodriguez, Y. Licona-Vera, E. Gándara, F. Molina-Freaner and A. A. Vásquez-Aguilar. 2019. Tracking host trees: the phylogeography of endemic Psittacanthus sonorae (Loranthaceae) mistletoe in the Sonoran Desert. Journal of Heredity 110(2): 229-246. DOI: https://doi.org/10.1093/jhered/esy065 DOI: https://doi.org/10.1093/jhered/esy065
Ornelas, J. F., S. Galicia, E. Ruiz-Sanchez, C. Lara, F. Molina-Freaner, A. A. Vásquez-Aguilar, E. Gándara, D. F. Angulo, A. P. Vovides and V. Sosa. 2024a. Comparative fruit morphology of nine Psittacanthus Mart. (Santalales: Loranthaceae) mistletoe species occurring in Mexico. Flora 319: 152585. DOI: https://doi.org/10.1016/j.flora.2024.152585 DOI: https://doi.org/10.1016/j.flora.2024.152585
Ornelas, J. F., C. Lara, S. Morales-Saldaña, A. A. Vásquez-Aguilar, D. F. Angulo, E. Ruiz-Sanchez, F. Molina-Freaner, E. Gándara, S. Galicia, A. P. Vovides and V. Sosa. 2024b. Insights into mistletoe seed germination: a study of hemiparasitic Psittacanthus Mart. (Santalales: Loranthaceae) mistletoes. Flora 316: 152527. DOI: https://doi.org/10.1016/j.flora.2024.152527 DOI: https://doi.org/10.1016/j.flora.2024.152527
Overton, J. 1994. Dispersal and infection in mistletoe metapopulations. Journal of Ecology 82(4): 711-723. DOI: https://doi.org/10.2307/2261437 DOI: https://doi.org/10.2307/2261437
Pérez-Crespo, M. J., C. Lara and J. F. Ornelas. 2016. Uncorrelated mistletoe infection patterns and mating success with local host specialization in Psittacanthus calyculatus (Loranthaceae). Evolutionary Ecology 30(6): 1061-1080. DOI: https://doi.org/10.1007/s10682-016-9866-z DOI: https://doi.org/10.1007/s10682-016-9866-z
R Development Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
Ramírez, M. M. and J. F. Ornelas. 2009. Germination of Psittacanthus schiedeanus mistletoe seeds after passage through the gut of Cedar Waxwings and Grey Silky-flycatchers. Journal of the Torrey Botanical Society 136(3): 322-331. DOI: https://doi.org/10.3159/09-RA-023.1 DOI: https://doi.org/10.3159/09-RA-023.1
Ramírez, M. M. and J. F. Ornelas. 2012. Cross-infection experiments of Psittacanthus schiedeanus: effects of host provenance, gut passage and host fate on mistletoe seedling survival. Plant Disease 96(6): 780-787. DOI: https://doi.org/10.1094/PDIS-06-11-0509 DOI: https://doi.org/10.1094/PDIS-06-11-0509
Ranal, M. A. and D. G. de Santana. 2006. How and why to measure the germination process? Brazilian Journal of Botany 29(1): 1-11. DOI: https://doi.org/10.1590/S0100-84042006000100002 DOI: https://doi.org/10.1590/S0100-84042006000100002
Rawsthorne, J., D. M. Watson and D. A. Roshier. 2012. The restricted seed rain of a mistletoe specialist. Journal of Avian Biology 43(1): 9-14. DOI: https://doi.org/10.1111/j.1600-048X.2011.05515.x DOI: https://doi.org/10.1111/j.1600-048X.2011.05515.x
Reid, N. 1989. Dispersal of mistletoe by honeyeaters and flowerpeckers: components of seed dispersal quality. Ecology 70(1): 137-145. DOI: https://doi.org/10.2307/1938420 DOI: https://doi.org/10.2307/1938420
Reid, N. 1991. Coevolution of mistletoes and frugivorous birds? Australian Journal of Ecology 16(4): 457-469. DOI: https://doi.org/10.1111/j.1442-9993.1991.tb01075.x DOI: https://doi.org/10.1111/j.1442-9993.1991.tb01075.x
Rodríguez-Mendieta, S., C. Lara and J. F. Ornelas. 2018. Unravelling host-mediated effects on hemiparasitic Mexican mistletoe Psittacanthus calyculatus (DC.) G. Don traits linked to mutualisms with pollinators and seed dispersers. Journal of Plant Ecology 11(6): 827-842. DOI: https://doi.org/10.1093/jpe/rty008 DOI: https://doi.org/10.1093/jpe/rty008
Sargent, S. 1995. Seed fate in a tropical mistletoe: the importance of host twig size. Functional Ecology 9(2): 197-204. DOI: https://doi.org/10.2307/2390565 DOI: https://doi.org/10.2307/2390565
Schupp, E. W. 1993. Quantity, quality, and the effectiveness of seed dispersal by animals. Vegetatio 107: 15-29. DOI: https://doi.org/10.1007/BF00052209 DOI: https://doi.org/10.1007/978-94-011-1749-4_2
Souza, M. L. and M. Fagundes. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5(17): 2566-2573. DOI: https://doi.org/10.4236/ajps.2014.517270 DOI: https://doi.org/10.4236/ajps.2014.517270
van Mölken, T., L. D. Jorritsma-Wienk, P. H. W. van Hoek and H. de Kroon. 2005. Only seed size matters for germination in different populations of the dimorphic Tragopogon pratensis subsp. pratensis (Asteraceae). American Journal of Botany 92(3): 432-437. DOI: https://doi.org/10.3732/ajb.92.3.432 DOI: https://doi.org/10.3732/ajb.92.3.432
Watson, D. M. 2009. Determinants of parasitic plant distribution: the role of host quality. Botany 87(1): 16-21. DOI: https://doi.org/10.1139/B08-105 DOI: https://doi.org/10.1139/B08-105
Watson, D. M. and M. Herring. 2012. Mistletoe as a keystone resource: an experimental test. Proceedings of the Royal Society B 279(1473): 3853-3860. DOI: https://doi.org/10.1098/rspb.2012.0856 DOI: https://doi.org/10.1098/rspb.2012.0856
Xu, J. and G. Du. 2023. Seed germination response to diurnally alternating temperatures: comparative studies on alpine and subalpine meadow populations. Global Ecology and Conservation 44: e02503. DOI: https://doi.org/10.1016/j.gecco.2023.e02503 DOI: https://doi.org/10.1016/j.gecco.2023.e02503
Yan, Z. and N. Reid. 1995. Mistletoe (Amyema miquelii and A. pendulum) seedling establishment on eucalypt hosts in eastern Australia. Journal of Applied Ecology 32(4): 778-784. DOI: https://doi.org/10.2307/2404817 DOI: https://doi.org/10.2307/2404817
Yule, K. M. and J. L. Bronstein. 2018. Reproductive ecology of a parasitic plant differs by host species: vector interactions and the maintenance of host races. Oecologia 186: 471-482. DOI: https://doi.org/10.1007/s00442-017-4038-6 DOI: https://doi.org/10.1007/s00442-017-4038-6
Yule, K. M., J. A. H. Koop, N. M. Alexandre, L. R. Johnston and N. K. Whiteman. 2016. Population structure of a vector-borne plant parasite. Molecular Ecology 25(14): 3332-3343. DOI: https://doi.org/10.1111/mec.13693 DOI: https://doi.org/10.1111/mec.13693
Zuber, D. and A. Widmer. 2009. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Molecular Ecology 18(9): 1946-1962. DOI: https://doi.org/10.1111/j.1365-294X.2009.04168.x DOI: https://doi.org/10.1111/j.1365-294X.2009.04168.x

Publicado
Cómo citar
-
Resumen39
-
PDF 16
-
EPUB 3
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Acta Botanica Mexicana reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto. Acta Botanica Mexicana no realiza cargos a los autores por enviar y procesar artículos para su publicación.
Todos los textos publicados por Acta Botanica Mexicana –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Acta Botanica Mexicana (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en Acta Botanica Mexicana.
Para todo lo anterior, el corrector de originales le solicitará junto con la revisión de galeras, que expida su Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Esta carta se debe enviar por correo electrónico en archivo pdf al correo: acta.botanica@inecol.mx (Carta-Cesión de Propiedad de Derechos de Autor).