Compuestos bioactivos, propiedades antioxidantes y antibacterianas de pulpa, piel y arilo de la fruta de Clusia quadrangula (Clusiaceae)

Autores/as

DOI:

https://doi.org/10.21829/abm130.2023.2180

Palabras clave:

ácidos grasos, minerales, polifenoles, propiedades antimicrobianas

Resumen

Antecedentes y Objetivos: La familia Clusiaceae es conocida por sus compuestos bioactivos con propiedades antioxidantes y antiinflamatorias beneficiosas. Los objetivos de este estudio fueron: 1) identificar y cuantificar compuestos polifenólicos individuales en el extracto metanólico de cáscara, pulpa y arilo del fruto de Clusia quadrangula por UPLC-MSMS, evaluar sus propiedades antioxidantes, 2) analizar el perfil de ácidos grasos, la composición mineral y 3) determinar la actividad antibacteriana contra bacterias patógenas del extracto metanólico.
Métodos: Las propiedades fisicoquímicas, antioxidantes y compuestos bioactivos, perfil de ácidos grasos y contenido de minerales fueron analizados utilizando un Espectrofotómetro de Microplaca, Cromatografía de Líquidos de Ultra Alta Resolución acoplado a un Espectrómetro de Masas triple cuadrupolo, Cromatografía de Gases acoplada a un Espectrómetro de Masas y Espectroscopia de Emisión Atómica de Plasma de Microondas.
Resultados clave: Se identificaron y cuantificaron 20 compuestos fenólicos más el precursor ácido shikímico (103.55 µg/g sólidos). Procianidina B2 (41.56 µg/g sólidos), (−)-epicatequina (34.07 µg/g sólidos) y ácido elágico (27.58 µg/g sólidos) se encontraron en mayor cantidad en el extracto metanólico de la pulpa. Los ácidos palmítico y linoleico fueron los ácidos grasos más abundantes en la pulpa, cáscara y arilo, y el ácido linolénico estuvo presente en la pulpa. La pulpa también exhibió la mayor cantidad de compuestos polifenólicos totales (24.33 mg GAE/g) y poder reductor evaluado por FRAP (18.697 mg ET/g). El análisis de los minerales reveló que todas las fracciones son ricas en magnesio, potasio, sodio y calcio. Los resultados mostraron que el extracto metanólico de las diferentes partes del fruto tenían propiedades antibacterianas contra Salmonella typhi, Escherichia coli, Staphylococcus aureus, y Enterococcus faecalis.
Conclusión: Estos resultados indican que las diferentes partes del fruto de C. quadrangula son una rica fuente de antioxidantes naturales y poseen propiedades antibacterianas, por lo que se puede considerar para su uso como ingrediente o aditivo en la industria cosmética, farmacéutica o alimentaria.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ayahi, I. A., R. A. Oderinde, B. O. Ogunkoya, A. Egunyomi and V. O. Taiwo. 2007. Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chemistry 101(3): 999-1004. DOI: https://doi.org/10.1016/j.foodchem.2006.02.053 DOI: https://doi.org/10.1016/j.foodchem.2006.02.053

Bai, J., Y. Wu, X. Liu, K. Zhong, Y. Huang and H. Gao. 2015. Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. International Journal of Molecular Sciences 16(11): 27145-27155. DOI: https://doi.org/10.3390/ijms161126015 DOI: https://doi.org/10.3390/ijms161126015

Bai, J. R., K. Zhong, Y. P. Wu, G. Elena and H. Gao. 2019. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 95: 327-333. DOI: https://doi.org/10.1016/j.foodcont.2018.08.020 DOI: https://doi.org/10.1016/j.foodcont.2018.08.020

Compagnone, R. S., A. Castillo Suarez, S. G. Leitao and F. Delle Monache. 2008. Flavonoids, benzophenones and a new euphane derivative from Clusia columnaris Engl. Brazilian Journal of Pharmacognosy 18(1): 6-10. DOI: https://doi.org/10.1590/S0102-695X2008000100003 DOI: https://doi.org/10.1590/S0102-695X2008000100003

Da Silva, M. C. and S. R. Paiva. 2012. Antioxidant activity and flavonoid content of Clusia fluminensis Planch. & Triana. Anais da Brasileira de Ciencias 84(3): 609-616. DOI: https://doi.org/10.1590/S0001-37652012000300004 DOI: https://doi.org/10.1590/S0001-37652012000300004

Del Valle, H. B., A. L. Yaktine, C. L. Taylor and A. C. Ross. 2011. Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press. Washington, DC., USA. 662 pp.

Dżugan, M., D. Grabek-Lejko, S. Swacha, M. Tomczyk, S. Bednarska and I. Kapusta. 2020. Physicochemical quality parameters antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Bioscience 34: 100538. DOI: https://doi.org/10.1016/j.fbio.2020.100538 DOI: https://doi.org/10.1016/j.fbio.2020.100538

Fei, P., M. A. Ali, S. Gong, Q. Sun, X. Bi, S. Liu and L. Guo. 2018. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control 94: 289-294. DOI: https://doi.org/10.1016/j.foodcont.2018.07.022 DOI: https://doi.org/10.1016/j.foodcont.2018.07.022

Ferreira-Oliveira, R., C. Amorim-Camara, M. F. Agra, T. M. Sarmento-Silva. 2012. Biflavonoids from the unripe fruits of Clusia paralicola and their antioxidant activity. Natural Product Communications 7(12): 1597-1600. DOI: https://doi.org/10.1177/1934578X1200701215 DOI: https://doi.org/10.1177/1934578X1200701215

Fu, C., A. E. K. Loo, F. P. P. Chia and D. Huang. 2007. Oligomeric procyanidins from mangosteen pericarps. Journal of Agricultural and Food Chemistry 55(19): 7689-7694. DOI: https://doi.org/10.1021/jf071166n DOI: https://doi.org/10.1021/jf071166n

Giusti, M. M. and R. E. Wrolstad. 2001. Anthocyanins. Characterization and Measurement with UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry. Unit, 1: F1.2.1-13. DOI: https://doi.org/10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913.faf0102s00

Hornero, D. and M. I. Mínguez. 2001. Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. Journal of Agricultural and Food Chemistry 49(8): 3584-3588. DOI: https://doi.org/10.1021/jf010400l DOI: https://doi.org/10.1021/jf010400l

Huang, L., K. P. Yang, Q. Zhao, H. J. Li, J. Y. Wang and Y. C. Wu. 2022. Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochemistry 143: 107969. DOI: https://doi.org/10.1016/j.bioelechem.2021.107969 DOI: https://doi.org/10.1016/j.bioelechem.2021.107969

Huerta-Reyes, M., M. C. Basualdo, L. Lozada, M. Jiménez-Estrada, C. Soler and R. Reyes-Chilpa. 2004. HIV Inhibition by extracts of Clusiaceae species from Mexico. Biological and Pharmaceutical Bulletin 27(6): 916-920. DOI: https://doi.org/10.1248/bpb.27.916 DOI: https://doi.org/10.1248/bpb.27.916

Jacota, S. and H. Dani. 1982. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry 127(1): 178-182. DOI: https://doi.org/10.1016/0003-2697(66)90168-0 DOI: https://doi.org/10.1016/0003-2697(82)90162-2

Juárez-Trujillo, N., J. L. Monribot-Villanueva, V. M. Jiménez-Fernández, R. Suárez-Montaño, A. S. Aguilar-Colorado, J. A., Guerrero-Analco and M. Jiménez. 2018. Phytochemical characterization of Izote (Yucca elephantipes) flowers. Journal of Applied Botany and Food Quality 210: 202-210. DOI: https://doi.org/10.5073/JABFQ.2018.091.027

Kilonzo, M. and D. Munisi. 2021. Antimicrobial activity and phytochemical analysis of Harrisonia abyssinica (Oliv) and Vepris simplicifolia (Verd) extracts used as traditional medicine in Tanzania. Saudi Journal of Biological Sciences 28(12): 7481-7485. DOI: https://doi.org/10.1016/j.sjbs.2021.08.041 DOI: https://doi.org/10.1016/j.sjbs.2021.08.041

Kshirsagar, P., S. Gaikwad, S. Pai, N. Desai and V. Bapat. 2022. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India. Biocatalysis and Agricultural Biotechnology 44: 102476. DOI: https://doi.org/10.1016/j.bcab.2022.102476 DOI: https://doi.org/10.1016/j.bcab.2022.102476

Lentz, D. L. 1993. Medicinal and other economic plants of the Paya of Honduras. Economic Botany 47(4): 358-370. DOI: https://doi.org/10.1007/BF02907349 DOI: https://doi.org/10.1007/BF02907349

López-López, A., A. I. Castellote-Bargalló, C. Campoy-Folgoso, M. Rivero-Urgel, R. Tormo-Carnicé, D. Infante-Pina and M. C. López-Sabater. 2001. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development 65(2): S83-S94. DOI: https://doi.org/10.1016/s0378-3782(01)00210-9 DOI: https://doi.org/10.1016/S0378-3782(01)00210-9

Lupette, J. and C. Benning. 2020. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 178: 15-25. DOI: https://doi.org/10.1016/j.biochi.2020.04.022 DOI: https://doi.org/10.1016/j.biochi.2020.04.022

Machado, M. M. P. and M. Emmerich. 1981. Presença de coléteres em Clusia lanceolata Cambess. Boletín del Museo Nacional de Historia Natural 59: 1-7.

Manach, C., A. Scalbert, C. Morand, C. Rémésy and L. Jiménez. 2004.. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79(5): 727-747. DOI: https://doi.org/10.1093/ajcn/79.5.727 DOI: https://doi.org/10.1093/ajcn/79.5.727

Mattos-Silva, K. M., B. Nunes-Luna, A. Joffili, S. Ribeiro-Paiva and C. Franca-Barros. 2019. Revealing the development of secretory structures in the leaves of Clusia fluminensis and Clusia lanceolata (Clusiaceae). Flora 256: 69-78. DOI: https://doi.org/10.1016/j.flora.2019.05.002 DOI: https://doi.org/10.1016/j.flora.2019.05.002

Mehrzadi, S., N. Bahrami, M. Mehraabani, M. Motevalian, E. Mansouri and M. Goudarzi. 2018. Ellagic acid: a promising protective remedy against testicular toxicity induced by arsenic. Biomedine & Pharmacotherapy 103: 1464-1472. DOI: https://doi.org/10.1016/j.biopha.2018.04.194 DOI: https://doi.org/10.1016/j.biopha.2018.04.194

Olivares, E. and G. Aguiar. 1999. Total and water-soluble calcium in six species of Clusiaceae. Flora 194(2): 179-188. DOI: https://doi.org/10.1016/S0367-2530(17)30896-4 DOI: https://doi.org/10.1016/S0367-2530(17)30896-4

Othman, L., A. Sleiman and R. M. Abdel-Massih. 2019. Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Frontiers in Microbiology 10: 911. DOI: https://doi.org/10.3389/fmicb.2019.00911 DOI: https://doi.org/10.3389/fmicb.2019.00911

Patel, A., S. S. Desai, V. K. Mane, J. Enman, U. Rova, P. Christakopoulos and L. Matsakas. 2022. Futuristic food fortification with a balanced ratio of dietary ω-3/ ω-6 omega fatty acids form the prevention of lifestyle diseases. Trends in Food Science & Technology 120: 140-153. DOI: https://doi.org/10.1016/j.tifs.2022.01.006 DOI: https://doi.org/10.1016/j.tifs.2022.01.006

Padhi, E., R. Liu, M. Hernandez, R. Tsao and D. Dan. 2016. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. Journal of Functional Foods 38(Part B): 602-611. DOI: https://doi.org/10.1016/j.jff.2016.11.006 DOI: https://doi.org/10.1016/j.jff.2016.11.006

Porri, D., H. Biesalski, A. Limitone, L. Bertuzzo and H. Cena. 2021. Effect of magnesium supplementation of women’s health and well-being. Nutrition Food Science 23: 30-36. DOI: https://doi.org/10.1016/j.nfs.2021.03.003 DOI: https://doi.org/10.1016/j.nfs.2021.03.003

Ramirez, C., J. H. Gil, C. Marín-Loaiza, B. Rojano and D. Durango. 2018. Chemical constituents and antioxidant activity of Garcinia madruno (Kunth) Hammel. Journal of King Saud University - Science 31(4): 1283-1289. DOI: https://doi.org/10.1016/j.jksus.2018.07.017 DOI: https://doi.org/10.1016/j.jksus.2018.07.017

Reche, J., M. S. Almansa, F. Hernández, A. A. Carbonell-Barrachina, P. Legua and A. Amorós. 2019. Fatty acid profile and pulp of Spanish jujube (Ziziphus jujube Mill.) fruit. Food Chemistry 295: 247-253. DOI: https://doi.org/10.1016/j.foodchem.2019.05.147 DOI: https://doi.org/10.1016/j.foodchem.2019.05.147

Ribeiro, P. R., C. Ferraz, L. S. Guedes, D. Martins and F. G. Cruz. 2011. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia 82(8): 1237-1240. DOI: https://doi.org/10.1016/j.fitote.2011.08.012 DOI: https://doi.org/10.1016/j.fitote.2011.08.012

Rice-Evans, C., N. J. Miller and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7): 933-956. DOI: https://doi.org/10.1016/0891-5849(95)02227-9 DOI: https://doi.org/10.1016/0891-5849(95)02227-9

Savi, A., G. C. Calegari, V. A. Queiroz Santos, E. Andrade Pereira and S. Dias Teixeira. 2020. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. Journal of King Saud University-Science 32(1): 636-642. DOI: https://doi.org/10.1016/j.jksus.2018.09.002 DOI: https://doi.org/10.1016/j.jksus.2018.09.002

Sayeed, R., M. Thakur and A. Gani. 2020. Celosia cristata Linn. flowers as a new source of nutraceuticals- A study on nutritional composition, chemical characterization and in-vitro antioxidant capacity. Heliyon 6(12): e05792. DOI: https://doi.org/10.1016/j.heliyon.2020.e05792 DOI: https://doi.org/10.1016/j.heliyon.2020.e05792

Silva-Gontijo, V., T. Correa de Souza, I. Aparecido-Rosa, M. Gomes-Soares, M. Aparecido da Silva, W. Villegas, C. Viegas-Junior and M. H. Dos Santos. 2012. Isolation and evaluation of the antioxidant activity of phenolic constituents of the Garcinia brasiliensis epicarp. Food Chemistry 132(3): 1230-1235. DOI: https://doi.org/10.1016/j.foodchem.2011.10.110 DOI: https://doi.org/10.1016/j.foodchem.2011.10.110

Singh, P., E. Gupta, N. Mishra and P. Mishra. 2020. Shikimic acid as intermediary model for the production of drugs effective against influenza virus. In: Egbuna, C., S. Kumar, J. C. Ifemeje, S. M. Ezzat and S. Kaliyaperumal (eds.). Phytochemicals as Lead Compounds for New Drug Discovery. Elsevier. Rockville, USA. Pp. 245-256. DOI: https://doi.org/10.1016/B978-0-12-817890-4.00016-0 DOI: https://doi.org/10.1016/B978-0-12-817890-4.00016-0

StatSoft and TIBCO Software Group Inc. 2002. Statistica version 7. Hamburg, Germany. https://www.tibco.com/data-science-and-streaming

Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D. H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extract. Journal of Food Composition and Analysis 19(6-7): 669-675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003 DOI: https://doi.org/10.1016/j.jfca.2006.01.003

Tome, A. C., E. Teixeira-Marsico, F. Alves-da Silva, L. Kato, Pimenta-do Nascimento and M. L. Guerra-Monteiro. 2019. Achachairu (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile. Journal of Food Measurement and Characterization 13: 213-221. DOI: https://doi.org/10.1007/s11694-018-9934-x DOI: https://doi.org/10.1007/s11694-018-9934-x

Wang, W., R. Chen and J. Wang. 2017. Procyanidin B2 ameliorates carrageenan-induced chronic nonbacterial prostatitis in rats via anti-inflammatory and activation of the Nrf2 pathway. Biochemical and Biophysical Research Communications 493(1): 794-799. DOI: https://doi.org/10.1016/j.bbrc.2017.08.089 DOI: https://doi.org/10.1016/j.bbrc.2017.08.089

Zheng, D., C. Lv, X. Sun, J. Wang and Z. Zhao. 2019. Preparation of a supersaturable self-microemulsion as drug delivery system form ellagic acid and evaluation of its antioxidant activities. Journal of Drug Delivery Science and Technology 53: 101209. DOI: https://doi.org/10.1016/j.jddst.2019.101209 DOI: https://doi.org/10.1016/j.jddst.2019.101209

Zengin, G., Z. Aumeeruddy-Elelfi, A. Mollica, M. Abdullah-Yilmaz and M. F. Mahomoodally. 2018. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species - A source of innovative phytopharmaceuticals from nature. Phytomedicine 38: 35-44. DOI: http://doi.org/10.1016/j.phymed.2017.10.017 DOI: https://doi.org/10.1016/j.phymed.2017.10.017

Descargas

Publicado

2023-07-07

Cómo citar

Martínez-Mendoza, B. I., Juárez-Trujillo, N., Mendoza-López, M. R., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., & Jiménez Fernández, M. (2023). Compuestos bioactivos, propiedades antioxidantes y antibacterianas de pulpa, piel y arilo de la fruta de Clusia quadrangula (Clusiaceae). Acta Botanica Mexicana, (130). https://doi.org/10.21829/abm130.2023.2180
Metrics
Vistas/Descargas
  • Resumen
    634
  • PDF
    303
  • XML
    4
  • EPUB
    101

Número

Sección

Fitoquímica

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.