Compuestos bioactivos, propiedades antioxidantes y antibacterianas de pulpa, piel y arilo de la fruta de Clusia quadrangula (Clusiaceae)
DOI:
https://doi.org/10.21829/abm130.2023.2180Palabras clave:
ácidos grasos, minerales, polifenoles, propiedades antimicrobianasResumen
Antecedentes y Objetivos: La familia Clusiaceae es conocida por sus compuestos bioactivos con propiedades antioxidantes y antiinflamatorias beneficiosas. Los objetivos de este estudio fueron: 1) identificar y cuantificar compuestos polifenólicos individuales en el extracto metanólico de cáscara, pulpa y arilo del fruto de Clusia quadrangula por UPLC-MSMS, evaluar sus propiedades antioxidantes, 2) analizar el perfil de ácidos grasos, la composición mineral y 3) determinar la actividad antibacteriana contra bacterias patógenas del extracto metanólico.
Métodos: Las propiedades fisicoquímicas, antioxidantes y compuestos bioactivos, perfil de ácidos grasos y contenido de minerales fueron analizados utilizando un Espectrofotómetro de Microplaca, Cromatografía de Líquidos de Ultra Alta Resolución acoplado a un Espectrómetro de Masas triple cuadrupolo, Cromatografía de Gases acoplada a un Espectrómetro de Masas y Espectroscopia de Emisión Atómica de Plasma de Microondas.
Resultados clave: Se identificaron y cuantificaron 20 compuestos fenólicos más el precursor ácido shikímico (103.55 µg/g sólidos). Procianidina B2 (41.56 µg/g sólidos), (−)-epicatequina (34.07 µg/g sólidos) y ácido elágico (27.58 µg/g sólidos) se encontraron en mayor cantidad en el extracto metanólico de la pulpa. Los ácidos palmítico y linoleico fueron los ácidos grasos más abundantes en la pulpa, cáscara y arilo, y el ácido linolénico estuvo presente en la pulpa. La pulpa también exhibió la mayor cantidad de compuestos polifenólicos totales (24.33 mg GAE/g) y poder reductor evaluado por FRAP (18.697 mg ET/g). El análisis de los minerales reveló que todas las fracciones son ricas en magnesio, potasio, sodio y calcio. Los resultados mostraron que el extracto metanólico de las diferentes partes del fruto tenían propiedades antibacterianas contra Salmonella typhi, Escherichia coli, Staphylococcus aureus, y Enterococcus faecalis.
Conclusión: Estos resultados indican que las diferentes partes del fruto de C. quadrangula son una rica fuente de antioxidantes naturales y poseen propiedades antibacterianas, por lo que se puede considerar para su uso como ingrediente o aditivo en la industria cosmética, farmacéutica o alimentaria.
Descargas
Citas
Ayahi, I. A., R. A. Oderinde, B. O. Ogunkoya, A. Egunyomi and V. O. Taiwo. 2007. Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chemistry 101(3): 999-1004. DOI: https://doi.org/10.1016/j.foodchem.2006.02.053 DOI: https://doi.org/10.1016/j.foodchem.2006.02.053
Bai, J., Y. Wu, X. Liu, K. Zhong, Y. Huang and H. Gao. 2015. Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. International Journal of Molecular Sciences 16(11): 27145-27155. DOI: https://doi.org/10.3390/ijms161126015 DOI: https://doi.org/10.3390/ijms161126015
Bai, J. R., K. Zhong, Y. P. Wu, G. Elena and H. Gao. 2019. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 95: 327-333. DOI: https://doi.org/10.1016/j.foodcont.2018.08.020 DOI: https://doi.org/10.1016/j.foodcont.2018.08.020
Compagnone, R. S., A. Castillo Suarez, S. G. Leitao and F. Delle Monache. 2008. Flavonoids, benzophenones and a new euphane derivative from Clusia columnaris Engl. Brazilian Journal of Pharmacognosy 18(1): 6-10. DOI: https://doi.org/10.1590/S0102-695X2008000100003 DOI: https://doi.org/10.1590/S0102-695X2008000100003
Da Silva, M. C. and S. R. Paiva. 2012. Antioxidant activity and flavonoid content of Clusia fluminensis Planch. & Triana. Anais da Brasileira de Ciencias 84(3): 609-616. DOI: https://doi.org/10.1590/S0001-37652012000300004 DOI: https://doi.org/10.1590/S0001-37652012000300004
Del Valle, H. B., A. L. Yaktine, C. L. Taylor and A. C. Ross. 2011. Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press. Washington, DC., USA. 662 pp.
Dżugan, M., D. Grabek-Lejko, S. Swacha, M. Tomczyk, S. Bednarska and I. Kapusta. 2020. Physicochemical quality parameters antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Bioscience 34: 100538. DOI: https://doi.org/10.1016/j.fbio.2020.100538 DOI: https://doi.org/10.1016/j.fbio.2020.100538
Fei, P., M. A. Ali, S. Gong, Q. Sun, X. Bi, S. Liu and L. Guo. 2018. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control 94: 289-294. DOI: https://doi.org/10.1016/j.foodcont.2018.07.022 DOI: https://doi.org/10.1016/j.foodcont.2018.07.022
Ferreira-Oliveira, R., C. Amorim-Camara, M. F. Agra, T. M. Sarmento-Silva. 2012. Biflavonoids from the unripe fruits of Clusia paralicola and their antioxidant activity. Natural Product Communications 7(12): 1597-1600. DOI: https://doi.org/10.1177/1934578X1200701215 DOI: https://doi.org/10.1177/1934578X1200701215
Fu, C., A. E. K. Loo, F. P. P. Chia and D. Huang. 2007. Oligomeric procyanidins from mangosteen pericarps. Journal of Agricultural and Food Chemistry 55(19): 7689-7694. DOI: https://doi.org/10.1021/jf071166n DOI: https://doi.org/10.1021/jf071166n
Giusti, M. M. and R. E. Wrolstad. 2001. Anthocyanins. Characterization and Measurement with UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry. Unit, 1: F1.2.1-13. DOI: https://doi.org/10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913.faf0102s00
Hornero, D. and M. I. Mínguez. 2001. Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. Journal of Agricultural and Food Chemistry 49(8): 3584-3588. DOI: https://doi.org/10.1021/jf010400l DOI: https://doi.org/10.1021/jf010400l
Huang, L., K. P. Yang, Q. Zhao, H. J. Li, J. Y. Wang and Y. C. Wu. 2022. Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochemistry 143: 107969. DOI: https://doi.org/10.1016/j.bioelechem.2021.107969 DOI: https://doi.org/10.1016/j.bioelechem.2021.107969
Huerta-Reyes, M., M. C. Basualdo, L. Lozada, M. Jiménez-Estrada, C. Soler and R. Reyes-Chilpa. 2004. HIV Inhibition by extracts of Clusiaceae species from Mexico. Biological and Pharmaceutical Bulletin 27(6): 916-920. DOI: https://doi.org/10.1248/bpb.27.916 DOI: https://doi.org/10.1248/bpb.27.916
Jacota, S. and H. Dani. 1982. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry 127(1): 178-182. DOI: https://doi.org/10.1016/0003-2697(66)90168-0 DOI: https://doi.org/10.1016/0003-2697(82)90162-2
Juárez-Trujillo, N., J. L. Monribot-Villanueva, V. M. Jiménez-Fernández, R. Suárez-Montaño, A. S. Aguilar-Colorado, J. A., Guerrero-Analco and M. Jiménez. 2018. Phytochemical characterization of Izote (Yucca elephantipes) flowers. Journal of Applied Botany and Food Quality 210: 202-210. DOI: https://doi.org/10.5073/JABFQ.2018.091.027
Kilonzo, M. and D. Munisi. 2021. Antimicrobial activity and phytochemical analysis of Harrisonia abyssinica (Oliv) and Vepris simplicifolia (Verd) extracts used as traditional medicine in Tanzania. Saudi Journal of Biological Sciences 28(12): 7481-7485. DOI: https://doi.org/10.1016/j.sjbs.2021.08.041 DOI: https://doi.org/10.1016/j.sjbs.2021.08.041
Kshirsagar, P., S. Gaikwad, S. Pai, N. Desai and V. Bapat. 2022. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India. Biocatalysis and Agricultural Biotechnology 44: 102476. DOI: https://doi.org/10.1016/j.bcab.2022.102476 DOI: https://doi.org/10.1016/j.bcab.2022.102476
Lentz, D. L. 1993. Medicinal and other economic plants of the Paya of Honduras. Economic Botany 47(4): 358-370. DOI: https://doi.org/10.1007/BF02907349 DOI: https://doi.org/10.1007/BF02907349
López-López, A., A. I. Castellote-Bargalló, C. Campoy-Folgoso, M. Rivero-Urgel, R. Tormo-Carnicé, D. Infante-Pina and M. C. López-Sabater. 2001. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Human Development 65(2): S83-S94. DOI: https://doi.org/10.1016/s0378-3782(01)00210-9 DOI: https://doi.org/10.1016/S0378-3782(01)00210-9
Lupette, J. and C. Benning. 2020. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 178: 15-25. DOI: https://doi.org/10.1016/j.biochi.2020.04.022 DOI: https://doi.org/10.1016/j.biochi.2020.04.022
Machado, M. M. P. and M. Emmerich. 1981. Presença de coléteres em Clusia lanceolata Cambess. Boletín del Museo Nacional de Historia Natural 59: 1-7.
Manach, C., A. Scalbert, C. Morand, C. Rémésy and L. Jiménez. 2004.. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79(5): 727-747. DOI: https://doi.org/10.1093/ajcn/79.5.727 DOI: https://doi.org/10.1093/ajcn/79.5.727
Mattos-Silva, K. M., B. Nunes-Luna, A. Joffili, S. Ribeiro-Paiva and C. Franca-Barros. 2019. Revealing the development of secretory structures in the leaves of Clusia fluminensis and Clusia lanceolata (Clusiaceae). Flora 256: 69-78. DOI: https://doi.org/10.1016/j.flora.2019.05.002 DOI: https://doi.org/10.1016/j.flora.2019.05.002
Mehrzadi, S., N. Bahrami, M. Mehraabani, M. Motevalian, E. Mansouri and M. Goudarzi. 2018. Ellagic acid: a promising protective remedy against testicular toxicity induced by arsenic. Biomedine & Pharmacotherapy 103: 1464-1472. DOI: https://doi.org/10.1016/j.biopha.2018.04.194 DOI: https://doi.org/10.1016/j.biopha.2018.04.194
Olivares, E. and G. Aguiar. 1999. Total and water-soluble calcium in six species of Clusiaceae. Flora 194(2): 179-188. DOI: https://doi.org/10.1016/S0367-2530(17)30896-4 DOI: https://doi.org/10.1016/S0367-2530(17)30896-4
Othman, L., A. Sleiman and R. M. Abdel-Massih. 2019. Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Frontiers in Microbiology 10: 911. DOI: https://doi.org/10.3389/fmicb.2019.00911 DOI: https://doi.org/10.3389/fmicb.2019.00911
Patel, A., S. S. Desai, V. K. Mane, J. Enman, U. Rova, P. Christakopoulos and L. Matsakas. 2022. Futuristic food fortification with a balanced ratio of dietary ω-3/ ω-6 omega fatty acids form the prevention of lifestyle diseases. Trends in Food Science & Technology 120: 140-153. DOI: https://doi.org/10.1016/j.tifs.2022.01.006 DOI: https://doi.org/10.1016/j.tifs.2022.01.006
Padhi, E., R. Liu, M. Hernandez, R. Tsao and D. Dan. 2016. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. Journal of Functional Foods 38(Part B): 602-611. DOI: https://doi.org/10.1016/j.jff.2016.11.006 DOI: https://doi.org/10.1016/j.jff.2016.11.006
Porri, D., H. Biesalski, A. Limitone, L. Bertuzzo and H. Cena. 2021. Effect of magnesium supplementation of women’s health and well-being. Nutrition Food Science 23: 30-36. DOI: https://doi.org/10.1016/j.nfs.2021.03.003 DOI: https://doi.org/10.1016/j.nfs.2021.03.003
Ramirez, C., J. H. Gil, C. Marín-Loaiza, B. Rojano and D. Durango. 2018. Chemical constituents and antioxidant activity of Garcinia madruno (Kunth) Hammel. Journal of King Saud University - Science 31(4): 1283-1289. DOI: https://doi.org/10.1016/j.jksus.2018.07.017 DOI: https://doi.org/10.1016/j.jksus.2018.07.017
Reche, J., M. S. Almansa, F. Hernández, A. A. Carbonell-Barrachina, P. Legua and A. Amorós. 2019. Fatty acid profile and pulp of Spanish jujube (Ziziphus jujube Mill.) fruit. Food Chemistry 295: 247-253. DOI: https://doi.org/10.1016/j.foodchem.2019.05.147 DOI: https://doi.org/10.1016/j.foodchem.2019.05.147
Ribeiro, P. R., C. Ferraz, L. S. Guedes, D. Martins and F. G. Cruz. 2011. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia 82(8): 1237-1240. DOI: https://doi.org/10.1016/j.fitote.2011.08.012 DOI: https://doi.org/10.1016/j.fitote.2011.08.012
Rice-Evans, C., N. J. Miller and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7): 933-956. DOI: https://doi.org/10.1016/0891-5849(95)02227-9 DOI: https://doi.org/10.1016/0891-5849(95)02227-9
Savi, A., G. C. Calegari, V. A. Queiroz Santos, E. Andrade Pereira and S. Dias Teixeira. 2020. Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. Journal of King Saud University-Science 32(1): 636-642. DOI: https://doi.org/10.1016/j.jksus.2018.09.002 DOI: https://doi.org/10.1016/j.jksus.2018.09.002
Sayeed, R., M. Thakur and A. Gani. 2020. Celosia cristata Linn. flowers as a new source of nutraceuticals- A study on nutritional composition, chemical characterization and in-vitro antioxidant capacity. Heliyon 6(12): e05792. DOI: https://doi.org/10.1016/j.heliyon.2020.e05792 DOI: https://doi.org/10.1016/j.heliyon.2020.e05792
Silva-Gontijo, V., T. Correa de Souza, I. Aparecido-Rosa, M. Gomes-Soares, M. Aparecido da Silva, W. Villegas, C. Viegas-Junior and M. H. Dos Santos. 2012. Isolation and evaluation of the antioxidant activity of phenolic constituents of the Garcinia brasiliensis epicarp. Food Chemistry 132(3): 1230-1235. DOI: https://doi.org/10.1016/j.foodchem.2011.10.110 DOI: https://doi.org/10.1016/j.foodchem.2011.10.110
Singh, P., E. Gupta, N. Mishra and P. Mishra. 2020. Shikimic acid as intermediary model for the production of drugs effective against influenza virus. In: Egbuna, C., S. Kumar, J. C. Ifemeje, S. M. Ezzat and S. Kaliyaperumal (eds.). Phytochemicals as Lead Compounds for New Drug Discovery. Elsevier. Rockville, USA. Pp. 245-256. DOI: https://doi.org/10.1016/B978-0-12-817890-4.00016-0 DOI: https://doi.org/10.1016/B978-0-12-817890-4.00016-0
StatSoft and TIBCO Software Group Inc. 2002. Statistica version 7. Hamburg, Germany. https://www.tibco.com/data-science-and-streaming
Thaipong, K., U. Boonprakob, K. Crosby, L. Cisneros-Zevallos and D. H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extract. Journal of Food Composition and Analysis 19(6-7): 669-675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003 DOI: https://doi.org/10.1016/j.jfca.2006.01.003
Tome, A. C., E. Teixeira-Marsico, F. Alves-da Silva, L. Kato, Pimenta-do Nascimento and M. L. Guerra-Monteiro. 2019. Achachairu (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile. Journal of Food Measurement and Characterization 13: 213-221. DOI: https://doi.org/10.1007/s11694-018-9934-x DOI: https://doi.org/10.1007/s11694-018-9934-x
Wang, W., R. Chen and J. Wang. 2017. Procyanidin B2 ameliorates carrageenan-induced chronic nonbacterial prostatitis in rats via anti-inflammatory and activation of the Nrf2 pathway. Biochemical and Biophysical Research Communications 493(1): 794-799. DOI: https://doi.org/10.1016/j.bbrc.2017.08.089 DOI: https://doi.org/10.1016/j.bbrc.2017.08.089
Zheng, D., C. Lv, X. Sun, J. Wang and Z. Zhao. 2019. Preparation of a supersaturable self-microemulsion as drug delivery system form ellagic acid and evaluation of its antioxidant activities. Journal of Drug Delivery Science and Technology 53: 101209. DOI: https://doi.org/10.1016/j.jddst.2019.101209 DOI: https://doi.org/10.1016/j.jddst.2019.101209
Zengin, G., Z. Aumeeruddy-Elelfi, A. Mollica, M. Abdullah-Yilmaz and M. F. Mahomoodally. 2018. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species - A source of innovative phytopharmaceuticals from nature. Phytomedicine 38: 35-44. DOI: http://doi.org/10.1016/j.phymed.2017.10.017 DOI: https://doi.org/10.1016/j.phymed.2017.10.017
Publicado
Cómo citar
-
Resumen634
-
PDF 303
-
XML4
-
EPUB 101
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Acta Botanica Mexicana reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto. Acta Botanica Mexicana no realiza cargos a los autores por enviar y procesar artículos para su publicación.
Todos los textos publicados por Acta Botanica Mexicana –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Acta Botanica Mexicana (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en Acta Botanica Mexicana.
Para todo lo anterior, el corrector de originales le solicitará junto con la revisión de galeras, que expida su Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Esta carta se debe enviar por correo electrónico en archivo pdf al correo: acta.botanica@inecol.mx (Carta-Cesión de Propiedad de Derechos de Autor).