Núm. 127 (2020)
Review

Integrando análisis morfométricos y filogenéticos: de la sistemática fenética a la morfometría filogenética

Efraín De Luna
Instituto de Ecología, A.C.
Biografía

Publicado 2020-02-25

Palabras clave

  • análisis multivariados,
  • filogenia,
  • forma,
  • marcas,
  • morfometría geométrica
  • geometric morphometrics,
  • landmarks,
  • multivariate analysis,
  • phylogeny,
  • shape

Resumen

Antecedentes y Objetivos: Se han acumulado métodos cuantitativos para el uso de mediciones lineales y coordenadas Cartesianas de puntos en análisis de la variación morfométrica. A diferencia de revisiones previas, aquí se enfatizan las bases teóricas de los espacios matemáticos y del morfoespacio de un carácter taxonómico. El objetivo de esta revisión es suministrar elementos conceptuales para una comprensión básica de los métodos morfométricos y estadísticos útiles en la sistemática bajo un enfoque filogenético.

Métodos: Los datos morfométricos se están aplicando en estudios de biología comparativa, usando las filogenias como referencia. En contraste, las aplicaciones de la morfometría en sistemática han sido con el objetivo de agrupar y distinguir grupos taxonómicos fenéticamente con la similitud total. Bajo un enfoque filogenético, los datos morfométricos también se pueden usar para el estudio de la variación de caracteres taxonómicos, la identidad de los estados y la inferencia de filogenias. Los grupos taxonómicos debieran ser propuestos a partir de grupos monofiléticos descubiertos con métodos filogenéticos.

Resultados clave: Se presentan las bases de la teoría de la morfometría, geometría vectorial, el espacio de Kendall, la distancia Procrustes, proyección de espacios tangenciales y construcción de hipercubos del morfoespacio. Se revisan conceptos estadísticos útiles para la aplicación de los Análisis de Componentes Principales y los Análisis de Variables Canónicas en sistemática. Particularmente se dan recomendaciones y ejemplos sobre el uso de mediciones lineales y coordenadas de puntos en análisis morfométricos para la identificación de especies, la variación de caracteres taxonómicos y en la inferencia de filogenias y clasificación.

Conclusiones: El amplio acervo actual de métodos brinda la oportunidad de integrar los datos morfométricos para descubrir homología táxica y homología transformacional. Esto implica un cambio epistemológico necesario para transitar de aplicaciones bajo una sistemática fenética, a la integración de los análisis morfométricos como parte de la investigación filogenética.

Citas

  1. Adams, D. C. y E. Otárola-Castillo. 2013. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4(4): 393-399. DOI: https://doi.org/10.1111/2041-210X.12035
  2. Adams, D. C., A. Cardini, L. R. Monteiro, P. O'Higgins y F. J. Rohlf. 2011. Morphometrics and phylogenetics: Principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of Human Evolution 60(2): 240-243. DOI: https://doi.org/10.1016/j.jhevol.2010.02.003
  3. Adams, D. C., F. J. Rohlf y D. E. Slice. 2013. A field comes of age: Geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy 24(1): 7-14. DOI: https://doi.org/10.4404/hystrix-24.1-6283
  4. Ancona, J. J., J. J. Ortiz-Díaz, E. De Luna, J. Tun-Garrido y R. C. Barrientos-Medina. 2019. Statistical analyses of morphological variation in the Gymnopodium floribundum complex (Polygonaceae): definition of three subspecies. Acta Botanica Mexicana 126: e1517. DOI: https://doi.org/10.21829/abm126.2019.1517
  5. Ascarrunz, E., J. Claude y W. G. Joyce. 2019. Estimating the phylogeny of geoemydid turtles (Cryptodira) from landmark data: an assessment of different methods. PeerJ 7: e7476. DOI: https://doi.org/10.7717/peerj.7476
  6. Assis, L. C. 2009. Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25(5): 528-544. DOI: https://doi.org/10.1111/j.1096-0031.2009.00261.x
  7. Assis, L. C. 2015. Homology assessment in parsimony and model‐based analyses: two sides of the same coin. Cladistics 31(3): 315-320. DOI: https://doi.org/10.1111/cla.12085
  8. Atchley, W. R. y E. H. Bryant (eds.). 1975. Multivariate statistical methods. Among-groups covariation. Benchmark papers in Systematic and Evolutionary Biology 1. Dowden, Hutchinson and Ross, Inc. Pennsylvania, USA. 461 pp.
  9. Atchley, W. R. y D. Anderson. 1978. Ratios and the statistical analysis of biological data. Systematic Zoology 27(1): 71-78. DOI: https://doi.org/10.2307/2412816
  10. Banchoff, T. y J. Wermer. 1991. Linear algebra through geometry. Undergraduate texts in Mathematics. Springer. New York, USA. DOI: https://doi.org/10.1007/978-1-4612-4390-8
  11. Bartlett, M. S. 1965. Multivariate statistics. In: Waterman, T. H. y H. J. Morowitz (eds.). Theoretical and Mathematical Biology. Blaidsdell Publ. Co. New York, USA. Pp. 201-224.
  12. Barraclough, R. y R. E. Blackith. 1962. Morphometric relationships in the genus Ditylenchus. Nemaologica 8(1): 51-58. DOI: https://doi.org/10.1163/187529262x01016
  13. Benítez, H. A. y T. A. Püschel. 2014. Modelando la varianza de la forma: morfometría geométrica aplicaciones en biología evolutiva. International Journal of Morphology 32(3): 998-1008. DOI: https://doi.org/10.4067/s0717-95022014000300041
  14. Bona, P., M. D. Ezcurra, F. Barrios y M. V. Fernandez-Blanco. 2018. A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines. Proceedings of the Royal Society B: Biological Sciences 285(1885): 20180843. DOI: https://doi.org/10.1098/rspb.2018.0843
  15. Bookstein, F. L. 1978. The measurement of biological shape and shape change. Lecture Notes in Biomathematics. 24. Springer-Verlag New York, USA. 191 pp. DOI: https://doi.org/10.1007/978-3-642-93093-5
  16. Bookstein, F. L. 1982. Foundations of morphometrics. Annual Review of Ecology and Systematics 13(1): 451-470. DOI: https://doi.org/10.1146/annurev.es.13.110182.002315
  17. Bookstein, F. L. 1984. A statistical method for biological shape comparisons. Journal of Theoretical Biology 107(3): 475-520. DOI: https://doi.org/10.1016/s0022-5193(84)80104-6
  18. Bookstein, F. L. 1989. Principal warps: Thin plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6): 567-585. DOI: https://doi.org/10.1109/34.24792
  19. Bookstein, F. L. 1992. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press. Cambridge, UK. 435 pp.
  20. Bookstein, F. L. 1994. Can biometrical shape be a homologous character? In: Hall, B. K. (ed.). Homology: The hierarchical basis of comparative biology. Academy Press. London, UK. Pp. 197-227. DOI: https://doi.org/10.1016/b978-0-12-318920-2.50011-1
  21. Bookstein, F. L. 1996a. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 58(2): 313-365. DOI: https://doi.org/10.1016/0092-8240(95)00329-0
  22. Bookstein, F. L. 1996b. Combining the Tools of Geometric Morphometrics. In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. (eds.). Advances in Morphometrics. NATO ASI Series (Series A: Life Sciences), vol. 284. Springer. Boston, USA. Pp. 131-151. DOI: https://doi.org/10.1007/978-1-4757-9083-2_12
  23. Bookstein, F. L. 2017. A Newly Noticed Formula Enforces Fundamental Limits on Geometric Morphometric Analyses. Evolutionary Biology 44(4): 522-541. DOI: https://doi.org/10.1007/s11692-017-9424-9
  24. Bookstein, F. L. 2018. A Course in Morphometrics for Biologists. Geometry and Statistics for Studies of Organismal Form. Cambridge University Press. Cambridge, UK. 556 p. DOI: https://doi.org/10.1017/9781108120418
  25. Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, G. R. Smith y R. E. Strauss. 1985. Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, With Examples From Fishes. Special Publication No. 15. Academy of Natural Sciences of Philadelphia. Philadelphia, USA. 277 pp.
  26. Botero-Trujillo, R., R. Ott y L. S. Carvalho. 2017. Systematic revision and phylogeny of the South American sun-spider genus Gaucha Mello-Leitão (Solifugae: Mummuciidae), with description of four new species and two new generic synonymies. Arthropod Systematics and Phylogeny 75(1): 3-44. https://www.senckenberg.de/wp-content/uploads/2019/07/01_asp_75_1_botero_3-44.pdf (consultado diciembre de 2019).
  27. Brower, A. V. Z. y V. Schawaroch. 1996. Three steps of homology assessment. Cladistics 12(3): 265-272. DOI: https://doi.org/10.1006/clad.1996.0020
  28. Byrkit, D. R. 1987. Statistics today: A comprehensive introduction. The Benjamin-Cummings Publishing Company. San Francisco, USA. 850 pp.
  29. Campbell, R. C. 1974. Statistics for Biologists. Cambridge University Press. Cambridge, UK. 385 pp.
  30. Campbell, N. A. y W. R. Atchley. 1981. The geometry of canonical variate analysis. Systematic Zoology 30(3): 268-280. DOI: https://doi.org/10.1093/sysbio/30.3.268
  31. Cannon, C. H. y P. S. Manos. 2001. Combining and comparing morphometric shape descriptors with a molecular phylogeny: the case of fruit type evolution in Bornean Lithocarpus (Fagaceae). Systematic Biology 50(6): 860-880. DOI: https://doi.org/10.1080/106351501753462849
  32. Carroll, J. D. y P. E. Green. 1997. Mathematical tools for applied multivariate analysis. Academic Press. London, UK. 376 pp. DOI: https://doi.org/10.1016/B978-0-12-160954-2.X5000-8
  33. Catalano, S. A. y P. A. Goloboff. 2012. Simultaneously Mapping and Superimposing Landmark Configurations with Parsimony as Optimality Criterion. Systematic Biology 61(3): 392-400. DOI: https://doi.org/10.1093/sysbio/syr119
  34. Catalano, S. A., P. A. Goloboff y N. P. Giannini. 2010. Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26(5): 539-549. DOI: https://doi.org/10.1111/j.1096-0031.2010.00302.x
  35. Catalano, S. A., M. D. Ercoli y F. J. Prevosti. 2015. The more, the better: the use of multiple landmark configurations to solve the phylogenetic relationships in Musteloids. Systematic Biology 64(2): 294-306. DOI: https://doi.org/10.1093/sysbio/syu107
  36. Chew, T., E. De Luna y D. González. 2010. Phylogenetic relationships of the pseudobulbous Tillandsia species (Bromeliaceae) inferred from cladistic analyses of ITS2, 5.8S ribosomal RNA gene, and ETS sequences. Systematic Botany 35(1): 86-95. DOI: https://doi.org/10.1600/036364410790862632
  37. Chollet-Villalpando, J. G. y E. De Luna. 2020. A geometric morphometric approach for disparity of the sulcus acusticus of sagitta in species of Gerreidae (Teleostei: Perciformes). Organisms Diversity and Evolution. DOI: https://doi.org/10.1007/s13127-019-00429-9
  38. Chollet-Villalpando, J. G., F. J. García-Rodríguez, E. De Luna y J. De La Cruz-Agüero. 2019. Geometric morphometrics for the analysis of character variation in size and shape of the sulcus acusticus of sagittae otolith in species of Gerreidae (Teleostei: Perciformes). Marine Biodiversity 49: 2323-2332. DOI: https://doi.org/10.1007/s12526-019-00970-y
  39. Claridge, M. F. 1995. Introducing systematics Agenda 2000. Biodiversity and Conservation 4(5): 451-454. DOI: https://doi.org/10.1007/bf00056335
  40. Claude, J. 2008. Morphometrics with R. Use R series. Springer-Verlag. New York, USA. 317 pp. DOI: https://doi.org/10.1007/978-0-387-77789-4
  41. Clouse, R. M., B. L. de Bivort y G. Giribet. 2011. Phylogenetic signal in morphometric data. Cladistics 27(4): 337-340. DOI: https://doi.org/10.1111/j.1096-0031.2010.00346.x
  42. Coxeter, H. S. M. 1973. Regular Polytopes. Dover Publications Inc. Mineola, USA. 321 pp.
  43. Crisci, J. V. y M. F. López-Armengol. 1983. Introducción a la teoría y práctica de la taxonomía numérica, serie de biología, monografía 26. Secretaría General de la Organización de los Estados Americanos. Washington, EUA. 132 pp.
  44. De Bivort, B. L., R. M. Clouse y G. Giribet. 2010. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research 48(4): 294-309. DOI: https://doi.org/10.1111/j.1439-0469.2009.00562.x
  45. Del Castillo-Batista, A. P., J. Ponce-Saavedra y J. C. Montero-Castro. 2017. Análisis morfométrico de Cestrum guatemalense, C. mexicanum y C. pacayense (Solanaceae). Revista Mexicana de Biodiversidad 88: 56-64. DOI: https://dx.doi.org/10.1016/j.rmb.2017.01.021
  46. De Luna, E. 1995. Bases filosóficas de los análisis cladísticos para la investigación taxonómica. Acta Botanica Mexicana 33: 63-79. DOI: https://doi.org/10.21829/abm33.1995.754
  47. De Luna, E. 2016. ¿Cuál programa de morfometría es más usado? Encuesta. In: Blog de Morfometría Geométrica. http://morfometriageometrica.blogspot.com/2016/10/cual-programa-de-morfometria-es-mas.html
  48. De Luna, E. y B. D. Mishler. 1996. El concepto de homología filogenética y la selección de caracteres taxonómicos. Boletín de la Sociedad Botánica de México 59: 131-146.
  49. De Luna, E. y G. Gómez-Velasco. 2008. Morphometrics and the identification of Braunia andrieuxii and B. secunda (Hedwigiaceae: Bryopsida). Systematic Botany 33(2): 219-228. DOI: https://doi.org/10.1600/036364408784571608
  50. De Luna, E., J. A. Guerrero y T. Chew-Taracena. 2005. Sistemática Biológica: avances y direcciones en la teoría y los métodos de la reconstrucción filogenética. Hidrobiológica 15(3): 351-370.
  51. Dennis, B., J. M. Ponciano, M. L. Taper y S. R. Lele. 2019. Errors in Statistical Inference Under Model Misspecification: Evidence, Hypothesis Testing, and AIC. Frontiers in Ecology and Evolution 7: 372. DOI: https://doi.org/10.3389/fevo.2019.00372
  52. De Pinna, M. C. C. 1991. Concepts and test of homology in the cladistic paradigm. Cladistics 7(4): 367-394. DOI: https://doi.org/10.1111/j.1096-0031.1991.tb00045.x
  53. De Queiroz, A. y P. H. Wimberger. 1993. The usefulness of behavior for phylogeny estimation: Levels of homoplasy in behavioral and morphological characters. Evolution 47: 46-60.
  54. De Souza, F. de P. S. T., G. P. Lewis y J. A. Hawkins. 2010. A revision of the South American genus Apuleia (Leguminosae, Cassieae). Kew Bulletin 65(2): 225-232. DOI: https://doi.org/10.1007/s12225-010-9213-4
  55. Depypere, L., P. Chaerle, P. Breyne, K. Vander Mijnsbrugge y P. Goetghebeur. 2009. A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Systematics and Evolution 279(1-4): 219-231. DOI: https://doi.org/10.1007/s00606-009-0158-8
  56. DeSalle, R. 2006. What´s in a character? Journal of Biomedical Informatics 39(1): 6-17. DOI: https://doi.org/10.1016/j.jbi.2005.11.002
  57. Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada y C. W. Robledo. 2017. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Córdoba, Argentina. http://www.infostat.com.ar
  58. Donoghue, M. J. 1992. Homology. In: Keller, E. F. y E. A. Lloyd (eds.). Keywords in Evolutionary Biology. Harvard University Press. Cambridge, USA. Pp. 170-179.
  59. Douma, J. C. y J. T. Weedon. 2019. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution 10(9): 1412-1430. DOI: https://doi.org/10.1111/2041-210x.13234
  60. Dryden, I. L. 2018. shapes package. R Foundation for Statistical Computing, Vienna, Austria. Contributed package. Version 1.2.4. http://www.R-project.org
  61. Dryden, I. L. y K. V. Mardia. 1998. Statistical shape analysis. John Wiley and Sons. New York, USA. 347 pp.
  62. Dujardin, S. y J. P. Dujardin. 2019. Geometric morphometrics in the cloud. Infection, Genetics and Evolution 70: 189-196. DOI: https://doi.org/10.1016/j.meegid.2019.02.018
  63. Engstrom, T. N., H. B. Shaffer y W. P. McCord. 2004. Multiple Data Sets, High Homoplasy, and the Phylogeny of Softshell Turtles (Testudines: Trionychidae). Systematic Biology 53(5): 693-710. DOI: https://doi.org/10.1080/10635150490503053
  64. Farris, J. S. 2007. Coding of continuous characters revisited. Darwiniana 45(supl): 9-10.
  65. Farris, J. S., A. G. Kluge y M. J. Eckhardt. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19(2): 172-189. DOI: https://doi.org/10.2307/2412452
  66. Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25: 471-492.
  67. Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125(1): 1-15. DOI: https://doi.org/10.1086/284325
  68. Felsenstein, J. 2000. PHYLIP (Phylogeny Inference Package) Version 3.6. University of Washington. Seattle, USA.
  69. Felsenstein, J. 2002. Quantitative characters, phylogenies, and morphometrics. In: MacLeod, N. y F. Forey (eds.). Morphology, shape and phylogeny. Taylor and Francis. London, UK. Pp. 27-44.
  70. Felsenstein, J. 2010. Phylogeny and morphometric data: a new paradigm? Correspondence on Morphmet mailing list, 4 Nov, 2010. http://www.mail-archive.com/morphmet@morphometrics.org/msg02008.html (consultado diciembre de 2019).
  71. Fielding, A. H. 2007. Cluster and classification techniques for the Biosciences. Cambridge University Press. Cambridge, UK. 246 pp. DOI: https://doi.org/10.1017/CBO9780511607493
  72. Fletcher, P. T., C. Lu, S. M. Pizer y S. Joshi. 2004. Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imaging 23(8): 995-1005. DOI: https://doi.org/10.1109/tmi.2004.831793
  73. Fragoso-Martínez, I., M. Martínez-Gordillo y E. De Luna. 2015. Salvia semiscaposa (Lamiaceae) a new species from Nanchititla, México. Phytotaxa 219(1): 58-68. DOI: https://doi.org/10.11646/phytotaxa.219.1.4
  74. Freudenstein, J. V. 2005. Characters, states and homology. Systematic Biology 54(6): 965-973. DOI: https://doi.org/10.1080/10635150500354654
  75. Fristrup, K. 1992. Character: current usages. In: Keller, E. F. y E. A. Lloyd. (eds). Keywords in Evolutionary Biology. Harvard University Press. Cambridge, USA. Pp. 45-51.
  76. Gavrilets, S. 1999. Dynamics of clade diversification on the morphological hypercube. Proceedings of the Royal Society of London, serie B, Biological Sciences 266(1421): 817-824. DOI: https://doi.org/10.1098/rspb.1999.0711
  77. Giere, R. N. 1979. Understanding Scientific Reasoning. Holt, Rinehart and Winston. New York, USA. 371 pp.
  78. Gift, N. y P. F. Stevens. 1997. Vagaries in the delimitation of character states in quantitative variation -an experimental study. Systematic Biology 46(1): 112-125. DOI: https://doi.org/10.2307/2413639
  79. Giribet, G. 2015. Morphology should not be forgotten in the era of genomics-a phylogenetic perspective. Zoologischer Anzeiger - A Journal of Comparative Zoology 256: 96-103. DOI: https://doi.org/10.1016/j.jcz.2015.01.003
  80. Goloboff, P. A. y S. Catalano. 2011. Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 27 (1): 42-51. DOI: https://doi.org/10.1111/j.1096-0031.2010.00318.x
  81. Goloboff, P. A. y S. Catalano. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32(3): 221-238. DOI: https://doi.org/10.1111/cla.12160
  82. Goloboff, P. A., C. I. Mattoni y A. S. Quinteros. 2006. Continuous characters analyzed as such. Cladistics 22(6): 589-601. DOI: https://doi.org/10.1111/j.1096-0031.2006.00122.x
  83. Goloboff, P. A., A. Torres y J. S. Arias. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34(4): 407-437. DOI: https://doi.org/10.1111/cla.12205
  84. González-José, R., I. Escapa, W. Neves, R. Cuneo y N. Pucciarelli. 2008. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature 453(7196): 775-778. DOI: https://doi.org/10.1038/nature06891
  85. Goodall, C. 1991. Procrustes Methods in the Statistical Analysis of Shape. Journal of the Royal Statistical Society (series B (Methodological)) 53(2): 285-321. DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01825.x
  86. Griffiths, P. E. 1999. Squaring the circle: natural kinds with historical essences. In: Wilson, R. A. (ed.). Species. New Interdisciplinary Essays. The MIT Press. Cambridge, USA. Pp. 209-228.
  87. Guerrero-Enríquez, J. A., E. De Luna y C. Sánchez. 2003. Morphometrics in the quantification of character state identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera). Biological Journal of the Linnean Society 80(1): 45-55. DOI: https://doi.org/10.1046/j.1095-8312.2003.00218.x
  88. Gündüz, N. y E. Fokoué. 2015. Robust Classification of High Dimension Low Sample Size Data. arXiv e-prints: 1501.00592.
  89. Gunz, P. y P. Mitteroecker. 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24(1): 103-109. DOI: https://doi.org/10.4404/hystrix-24.1-6292
  90. Hammer, Ø., D. A. T. Harper y P. D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.
  91. Hausner, M. 1965. A vector space approach to geometry. Dover books on Mathematics. Dover Publications Inc. New York, USA. 416 pp.
  92. Hawkins, J. A. 2000. A survey of primary homology assessment: different botanists perceive and define characters in different ways. In: Scotland, R. y R. T. Pennington (eds.). Homology and Systematics: coding characters for phylogenetic analysis. The Systematics Association, special volume series 58. Taylor and Francis. London, UK. Pp. 22-53.
  93. Hawkins, J. A., C. E. Hughes y R. W. Scotland. 1997. Primary homology assessment, characters and character states. Cladistics 13(3): 275-283. DOI: https://doi.org/10.1006/clad.1997.0042
  94. Healy, M. J. R. 2000. Matrices for statistics. Clarendon Press. Oxford, UK. 147 pp.
  95. Hillis, D. M. y J. J. Wiens. 2000. Molecules versus morphology in systematics. Conflicts, artifacts, and misconceptions. In: Wiens, J. J. (ed.). Phylogenetic Analysis of Morphological Data. Smithsonian Institution. Washington, DC., USA. Pp. 1-19.
  96. Hodálová, I., P. Mereďa Jr., P. Mártonfi, L. Mártonfiová y J. Danihelka. 2008. Morphological Characters Useful for the Delimitation of Taxa Within Viola Subsect. Viola (Violaceae): A Morphometric Study from the West Carpathians. Folia Geobotanica 43(1): 83-117. DOI: https://doi.org/10.1007/s12224-008-9005-x
  97. Houle, D., C. Pélabon, G. P. Wagner y T. F. Hansen. 2011. Measurement and meaning in biology. Quarterly Review of Biology 86(1): 3-34. DOI: https://doi.org/10.1086/658408
  98. Huckemann, S. y H. Ziezold. 2006. Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Advances in Applied Probability 38(2): 299-319. DOI: https://doi.org/10.1239/aap/1151337073
  99. Humphries, C. J. 2002. Homology, characters and continuous variables. In: MacLeod, N. y F. Forey (eds.). Morphology, shape and phylogeny. Taylor and Francis. London, UK. Pp. 8-26.
  100. Jäkel, F., M. Singh, F. A. Wichmann y M. H. Herzog. 2016. An overview of quantitative approaches in Gestalt perception. Vision Research 126: 3-8. DOI: https://doi.org/10.1016/j.visres.2016.06.004
  101. James, F. C. y C. E. McCulloch. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora's box. Annual Review of Ecology and Systematics 21(1): 129-166. DOI: https://doi.org/10.1146/annurev.ecolsys.21.1.129
  102. Jaramillo, N. 2011. Morfometría geométrica: principios teóricos y métodos de empleo. In: Triana Chávez, O., A. M. Mejía Jaramillo y A. M. Gómez Palacio (eds.). Fronteras de investigación en enfermedades infecciosas. Modelo enfermedad de Chagas. Universidad de Antioquia. Antioquia, Colombia. Pp. 69-87.
  103. Jardine, N. 1969. A Logical Basis for Biological Classification. Systematic Biology 18(1): 37-52. DOI: https://doi.org/10.2307/2412409
  104. Jeffers, J. N. R. 1967. The Study of Variation in Taxonomic Research. The Statistician 17(1): 29-43. DOI: https://doi.org/10.2307/2987200
  105. Jenner, R. A. 2002. Boolean logic and character state identity: pitfalls of character coding in metazoan cladistics. Contributions to Zoology 71(1-3): 67-91. DOI: https://doi.org/10.1163/18759866-0710103006
  106. Jolliffe, I. 2005. Principal Component Analysis. In: Everitt, B. S. y D. C. Howell (eds.). Encyclopedia of Statistics in Behavioral Science. Wiley Online Library. Indianapolis, USA. DOI: https://doi.org/10.1002/0470013192.bsa501
  107. Jung, S. y J. S. Marron. 2009. PCA consistency in high dimension, low sample size context. The Annals of Statistics 37(6B): 4104-4130. DOI: https://doi.org/10.1214/09-aos709
  108. Kachigan, K. S. 1991. Multivariate Statistical Analysis. A conceptual introduction. Radius Press. New York, USA. 303 pp.
  109. Kendall, D. G. 1977. The diffusion of shape. Advances in Applied Probability 9(3): 428-430. DOI: https://doi.org/10.2307/1426091
  110. Kendall, D. G. 1981. The statistics of shape. In: Barnett, V. (ed.). Interpreting multivariate data. John Wiley and Sons. New York, USA. Pp. 75-80.
  111. Kendall, D. G. 1984. Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16(2): 81-121. DOI: https://doi.org/10.1112/blms/16.2.81
  112. Kendall, D. G. 1989. A survey of the statistical theory of shape. Statistical Science 4(2): 87-120. DOI: https://doi.org/10.1214/ss/1177012582
  113. Kendall, D. G., D. Barden, T. K. Carne y H. Le. 1999. Shape and shape theory. John Wiley and Sons. Chichester, UK. 306 pp. DOI: https://doi.org/10.1002/9780470317006
  114. Kendall, M. G. 2004. A course in the geometry of n dimensions. Dover publications, Inc. New York, USA. 63 pp.
  115. Kent, J. T. y K. V. Mardia. 2001. Shape, Procrustes Tangent Projections and Bilateral Symmetry. Biometrika 88(2): 469-485. DOI: https://doi.org/10.1093/biomet/88.2.469
  116. Kim, J. y M. Kim 2001. The mathematical structure of characters and modularity. In: Wagner, G. P. (ed). The character concept in Evolutionary Biology. Academic Press. Cambridge, USA. Pp. 215-236. DOI: https://doi.org/10.1016/B978-012730055-9/50019-7
  117. Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11(2): 353-357. DOI: https://doi.org/10.1111/j.1755-0998.2010.02924.x
  118. Klingenberg, C. P. y N. A. Gidaszewski. 2010. Testing and Quantifying Phylogenetic Signals and Homoplasy in Morphometric Data. Systematic Biology 59(3): 245-261. DOI: https://doi.org/10.1093/sysbio/syp106
  119. Kluge, A. G. 1997. Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13(1-2): 81-96. DOI: https://doi.org/10.1111/j.1096-0031.1997.tb00242.x
  120. Kluge, A. G. 2004. On total evidence: for the record. Cladistics 20(2): 205-207. DOI: https://doi.org/10.1111/j.1096-0031.2004.00020.x
  121. Koutecký, P. 2015. MorphoTools: a set of R functions for morphometric analysis. Plant Systematics and Evolution 301: 1115-1121. DOI: https://doi.org/10.1007/s00606-014-1153-2
  122. Kume, A., I. L. Dryden y H. Le. 2007. Shape-space smoothing splines for planar landmark data. Biometrika 94(3): 513-528. DOI: https://doi.org/10.1093/biomet/asm047
  123. Lattin, J., J. D. Carroll y P. E. Green. 2003. Analyzing Multivariate Data. Thomson Brooks and Cole. Pacific Grove, USA. 556 pp.
  124. Lele, S. R. 1993. Euclidean distance matrix analysis (EDMA) of landmarks data: estimation of mean form and mean form difference. Mathematical Geology 25(5): 573-602. DOI: https://doi.org/10.1007/bf00890247
  125. Lele, S. R. y J. T. Richtsmeier. 2001. An invariant approach to statistical analysis of shapes. Chapman and Hall/CRC. Boca Raton, USA. 308 pp.
  126. Lele, S. R. y C. E. McCulloch. 2002. Invariance, Identifiability, and Morphometrics. Journal of the American Statistical Association 97: 796-806. DOI: https://doi.org/10.1198/016214502388618609
  127. Lewis, P. 2001. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Systematic Biology 50(6): 913-925. DOI: https://doi.org/10.1080/106351501753462876
  128. MacLeod, N. 2002. Phylogenetic signals in morphometric data. In: MacLeod, N. y P. T. Forey (eds.). Morphology, Shape and Phylogeny. Taylor and Francis. London, UK. Pp. 100-138.
  129. MacLeod, N. 2017. Morphometrics: History, development methods and prospects. Zoological Systematics 42(1): 4-33. DOI: https://doi.org/10.11865/zs.201702
  130. Magrini, S. y A. Scoppola. 2010. Geometric morphometrics as a tool to resolve taxonomic problems: the case of Ophioglossum species (ferns). In: Nimis, P. L. y R. Vignes Lebbe (eds.). Tools for Identifying Biodiversity: Progress and Problems. EUT - Edizioni Università di Trieste. Trieste, Italy. Pp. 251-256.
  131. Manly, B. F. J. 1986. Multivariate Statistical Methods: A Primer. Chapman and Hall. London, UK. 159 pp.
  132. Marcus, L. F. 1990. Traditional Morphometrics. In: Rohlf, F. J. y F. L. Bookstein (eds.). Proceedings of the Michigan Morphometrics Workshop. Special Publication 2. The University of Michigan Museum of Zoology. Ann Arbor, USA. Pp. 77-122.
  133. Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. 1996. Advances in morphometrics. NATO ASI Series. Plenum Press. New York, USA. 587 pp. DOI: https://doi.org/10.1007/978-1-4757-9083-2
  134. Marhold, K. 2011. Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy, T. F. y H. W. Lack (eds). Monographic plant systematics: Fundamental assessment of plant biodiversity. A.R.G. Gantner Verlag K.G., FL-9491 Ruggell. Vienna, Austria. Pp. 75-101.
  135. Márquez, E. J., R. Cabeen, R. P. Woods y D. Houle. 2012. The measurement of local variation in shape. Evolutionary Biology 39(3): 419-439. DOI: https://doi.org/ 10.1007/s11692-012-9159-6
  136. Martínez-Domínguez, L., F. Nicolalde-Morejón, F. Vergara-Silva, D. W. Stevenson y E. del Callejo. 2017. Cryptic diversity, sympatry, and other integrative taxonomy scenarios in the Mexican Ceratozamia miqueliana complex (Zamiaceae). Organisms Diversity and Evolution 17: 727-752. DOI: https://doi.org/10.1007/s13127-017-0341-7
  137. Martínez-Melo, A., E. De Luna y B. E. Buitrón-Sánchez. 2017. Morfometría de los equinodeos de la Familia Cassidulidae (Echinoidea: Cassiduloida). Revista de Biología Tropical 65(supl. 1): s233-s243. DOI: https://doi.org/10.15517/rbt.v65i1-1.31691
  138. Martínez-Naveira, A. 2007. La curvatura de Riemann a través de la historia. Miscelánea Matemática 44: 29-52. http://www.miscelaneamatematica.org/get_pdf.php?num=44&tit=Naveira_A_M (consultado diciembre de 2019).
  139. Medina, R. G., R. J. Paxton, E. De Luna, F. A. Fleites, L. A. Medina y J. J. G. Quezada-Euán. 2018. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). Journal of Thermal Biology 74: 214-225. DOI: https://doi.org/10.1016/j.jtherbio.2018.04.003
  140. Medina-Villarreal, A., J. González-Astorga y A. E. de los Monteros. 2019. Evolution of Ceratozamia cycads: A proximate-ultimate approach. Molecular Phylogenetics and Evolution 139: 106530. DOI: https://doi.org/10.1016/j.ympev.2019.106530
  141. Miller, T. R., T. D. Baird, C. M. Littlefield, G. Kofinas, F. Chapin III y C. L. Redman. 2008. Epistemological pluralism: reorganizing interdisciplinary research. Ecology and Society 13(2): 46. DOI: https://doi.org/10.5751/es-02671-130246
  142. Mishler, B. D. y E. De Luna. 1997. Sistemática filogenética y el concepto de Especie. Boletín de la Sociedad Botánica de México 60: 45-57. DOI: https://doi.org/10.17129/botsci.1518
  143. Mitteroecker, P. y S. M. Huttegger. 2009. The concept of morphospaces in evolutionary and developmental biology: Mathematics and metaphors. Biological Theory 4: 54-67. DOI: https://doi.org/10.1162/biot.2009.4.1.54
  144. Monteiro, L. R. 2000. Why morphometrics is special: The problem with using partial warps as characters for phylogenetic inference. Systematic Biology 49(4): 796-800. DOI: https://doi.org/10.1080/106351500750049833
  145. Monteiro, L. R. 2013. Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, the Italian Journal of Mammalogy 24(1): 25-32. DOI: https://doi.org/10.4404/hystrix-24.1-6282
  146. Naylor, G. 1996. Can partial warp scores be used as cladistic characters? In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. (eds.). Advances in morphometrics. NATO ASI Series. Plenum Press. New York, USA. Pp. 519-530. DOI: https://doi.org/10.1007/978-1-4757-9083-2_45
  147. Nixon K. y J. M. Carpenter. 1996. On simultaneous analysis. Cladistics 12(3): 221-241. DOI: https://doi.org/10.1006/clad.1996.0016
  148. O´Higgins, P. 2010. Methodological issues in the description of forms. In: Lestrel, P. E. (ed.). Fourier descriptors and their applications in Biology. Cambridge University Press. Pp. 74-105. DOI: https://doi.org/10.1017/cbo9780511529870.005
  149. O´Higgins, P. y N. Jones. 2006. Tools for statistical shape analysis. Hull York Medical School. Heslington, UK. http://sites.google.com/site/hymsfme/resources. (consultado diciembre de 2019)
  150. Ospina-Garcés, S. y E. De Luna. 2017. Phylogenetic analysis of landmark data and the evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae). Zoomorphology 136(2): 251-265. DOI: https://doi.org/10.1007/s00435-017-0345-z
  151. Palci, A. y M. S. Y. Lee. 2019. Geometric morphometrics, homology and cladistics: Review and recommendations. Cladistics 35(2): 230-242. DOI: https://doi.org/10.1111/cla.12340
  152. Parins-Fukuchi, C. 2018. Use of continuous traits can improve morphological phylogenetics. Systematic Biology 67(2): 328-339. DOI: https://doi.org/10.1093/sysbio/syx072
  153. Patterson, C. 1982. Morphological characters and homology. In: Joysey, K. A. y A. E. Friday (eds.). Problems of Phylogenetic Reconstruction. Academic Press. London, UK. Pp. 21-74.
  154. Perez, S. I., V. Bernal y P. N. Gonzalez. 2006. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy 208(6): 769-784. https://doi.org/10.1111/j.1469-7580.2006.00576.x
  155. Philippe, H., G. Lecointre, H. L. van Le y H. L. Guyader. 1996. A Critical Study of Homoplasy in Molecular Data with the Use of a Morphologically Based Cladogram, and Its Consequences for Character Weighting. Molecular Biology and Evolution 13(9): 1174-1186.
  156. Phillips, R. B. 1983. Shape Characters in numerical taxonomy and problems with ratios. Taxon 32(4): 535-544. DOI: https://doi.org/10.2307/1221721
  157. Poe, S. y J. J. Wiens. 2000. Character selection and the methodology of morphological phylogenetics. In: Wiens, J. J. (ed.). Phylogenetic Analysis of Morphological Data. Smithsonian Institution. Washington, DC., USA. Pp. 20-36.
  158. Polly, P. D. 2018. Geometric morphometrics. In: López-Varela, S. L. (ed.). The Encyclopedia of Archeological Sciences. John Wiley and Sons. Hoboken, USA. Pp. 1-5. DOI: https://doi.org/10.1002/9781119188230.saseas0258
  159. Quezada-Euan, J. J. G., H. D. Sheets, E. De Luna y T. Eltz. 2015. Identification of cryptic species and morphotypes in male Euglossa: morphometric analysis of forewings (Hymenoptera: Euglossini). Apidologie 46(6): 787-795. DOI: https://doi.org/10.1007/s13592-015-0369-7
  160. Quicke, D. L. J. 1993. Principles and Techniques of Contemporary Taxonomy. Experimental and Clinical Neuroscience series. Springer. Dordrecht, Netherlands. 311 pp. DOI: https://doi.org/10.1007/978-94-011-2134-7
  161. Rae, T. C. 1998. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14(3): 221-228. DOI: https://doi.org/10.1006/clad.1998.0064
  162. Ramírez-Galarza, A. I. y J. Seade-Kuri. 2002. Introducción a la geometría avanzada. Las prensas de ciencias. Facultad de Ciencias, Universidad Nacional Autónoma de México. México, D.F., México. 249 pp.
  163. Ramírez-Sánchez, M. M., E. De Luna y C. Cramer. 2016. Geometric and traditional morphometrics for the assessment of character state identity: multivariate statistical analyses of character variation in the water mite genus Arrenurus (Acari, Hydrachnidia, Arrenuridae). Zoological Journal of the Linnean Society 177(4): 720-749. DOI: https://doi.org/10.1111/zoj.12384
  164. Revell, L. J., L. J. Harmon y D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57(4): 591-601. DOI: https://doi.org/10.1080/10635150802302427
  165. Reyment, R. A., R. E. Blackith y N. A. Campbell. 1984. Multivariate morphometrics. Academic Press. London, UK. 233 pp.
  166. Richtsmeier, J. T., S. R. Lele y T. M. Cole. 2005. Landmark Morphometrics and the Analysis of Variation. In: Hallgrímsson, B. y B. K. Hall (eds.). Variation: A Central Concept in Biology. Academic Press. London, UK. Pp. 49-69. DOI: https://doi.org/10.1016/B978-012088777-4/50006-5
  167. Rieppel, O. 2005. The philosophy of total evidence and its relevance for phylogenetic inference. Papeis Avulsos de Zoologia 45(8): 77-89. DOI: https://doi.org/10.1590/s0031-10492005000800001
  168. Rieppel, O. y M. Kearney. 2002. Similarity. Biological Journal of the Linnean Society 75(1): 59-82. DOI: https://doi.org/10.1046/j.1095-8312.2002.00006.x
  169. Rieppel, O. y M. Kearney. 2007. The poverty of taxonomic characters. Biology and Philosophy 22(1): 95-113. DOI: https://doi.org/10.1007/s10539-006-9024-z
  170. Rodgers, J. L. 2010. The Epistemology of Mathematical and Statistical Modeling. A Quiet Methodological Revolution. American Psychologist 65(1):1-12. DOI: https://doi.org/10.1037/a0018326
  171. Rohlf, F. J. 1971. Perspectives on the Application of Multivariate Statistics to Taxonomy. Taxon 20(1): 85-90. DOI: https://doi.org/10.2307/1218537
  172. Rohlf, F. J. 1996. Morphometric spaces, shape components and the effects of linear transformations. In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice (eds.). Advances in morphometrics. NATO ASI Series (series A: Life Sciences vol 2. Springer. New York, USA. Pp. 117-129. DOI: https://doi.org/10.1007/978-1-4757-9083-2_11
  173. Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47(1): 147-158. DOI: https://doi.org/10.1080/106351598261094
  174. Rohlf, F. J. 1999. Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification 16(2): 197-223. DOI: https://doi.org/10.1007/s003579900054
  175. Rohlf, F. J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Publishing Setauket. New York, USA.
  176. Rohlf, F. J. 2002. Geometric morphometrics and phylogeny. In: MacLeod, N. y P. T. Forey (eds.). Morphology, Shape and Phylogeny. Taylor and Francis. London, UK. Pp. 175-191.
  177. Rohlf, F. J. 2003. Bias and error in estimates of mean shape in geometric morphometrics. Journal of Human Evolution 44(6): 665-683. DOI: https://doi.org/10.1016/s0047-2484(03)00047-2
  178. Rohlf, F. J. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26: 9-12. DOI: https://doi.org/10.4404/hystrix-26.1-11264
  179. Rohlf, F. J. 2017. TpsDig software, Version 2.30. Computer program and documentation. State University of New York, Department of Ecology and Evolution. New York, USA. http://life.bio.sunysb.edu/morph/ (consultado diciembre de 2019).
  180. Rohlf, F. J. y L. F. Marcus. 1993. A Revolution in Morphometrics. Trends in Ecology and Evolution 8(4): 129-32. DOI: https://doi.org/10.1016/0169-5347(93)90024-j
  181. Ruse, M. 1988. Philosophy of biology today. State University of New York Press. Albany, USA. 155 pp.
  182. Sanderson, M. J. y M. J. Donoghue. 1989. Patterns of variation in levels of homoplasy. Evolution 43(8): 1781-1795. DOI: https://doi.org/10.2307/2409392
  183. Sanderson, M. J. y L. Hufford. (eds.). 1996. Homoplasy: The Recurrence of Similarity in Evolution. Academic Press. San Diego, USA. 339 pp.
  184. Sandría, J. y E. De Luna. 2016. LMs4TNT, Java tool to convert xy coordinates to a TNT data block. jt4tnt v1.0. http://www.filogenetica.org/Java_tool/lms4tnt.htm (consultado diciembre de 2019).
  185. Sereno, P. C. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23(6): 565-587. DOI: https://doi.org/10.1111/j.1096-0031.2007.00161.x
  186. Schlager, S. 2017. Morpho and Rvcg-Shape Analysis in R. In: Zheng, G., S. Li y G. Szekely (eds.). Statistical Shape and Deformation Analysis. Academic Press. London, UK. Pp. 217-256.
  187. Sheets, H. D. 2005. MakeFan, a tool for drawing alignment ‘fans’ at equal angular spacing. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).
  188. Sheets, H. D. 2014a. CoordGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).
  189. Sheets, H. D. 2014b. Semiland8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).
  190. Sheets, H. D. 2014c. PCAGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).
  191. Sheets, H. D. 2014d. CVAGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).
  192. Sheets, H. D., M. Zelditch y D. Swiderski. 2002. Growth and shape: measurements and metrics. Systematic Biology 51(5): 817-822. DOI: https://doi.org/10.1080/10635150290102438
  193. Simpson, G. G., R. C. Lewontin y A. Roe. 1960. Quantitative Zoology. Harcourt, Brace and Company. New York, USA. 440 pp.
  194. Slice, D. E. 2013. Morpheus et al., Java Edition. Department of Scientific Computing, The Florida State University. Tallahassee, USA. http://morphlab.sc.fsu.edu/software/morpheus/index.html (consultado diciembre de 2019).
  195. Small, C. G. 1996. The statistical theory of shape. Springer Series in Statistics. Springer. New York, USA. 230 pp. DOI: https://doi.org/10.1007/978-1-4612-4032-7
  196. Smith, M. R. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15(2): 20180632. DOI: https://doi.org/10.1098/rsbl.2018.0632
  197. Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140(3): 476-486. DOI: https://doi.org/10.1002/ajpa.21090
  198. Sneath, P. H. A. 1995. Thirty years of numerical taxonomy. Systematic Biology 44(3): 281-298. DOI: https://doi.org/10.2307/2413593
  199. Solis-Zurita, C., E. De Luna y D. González. 2019. Phylogenetic relationships in the Sceloporus variabilis (Squamata: Phrynosomatidae) complex based on three molecular markers, continuous characters, and geometric morphometric data. Zoologica Scripta 48(4): 419-439. DOI: https://doi.org/10.1111/zsc.12349
  200. Sosa, V. 2007. A Molecular and Morphological Phylogenetic Study of Subtribe Bletiinae (Epidendreae, Orchidaceae). Systematic Botany 32(1): 34-42. DOI: https://doi.org/10.1600/036364407780360175
  201. Sosa, V. y E. De Luna. 1998. Morphometrics and character state recognition for cladistic analyses in the Bletia reflexa complex. Plant Systematics and Evolution 212(3-4): 185-213. DOI: https://doi.org/10.1007/bf01089739
  202. Soto-Vivas, A., J. Liria y E. De Luna. 2011. Morfometria geométrica y filogenia en Rhodniini de Venezuela (Hemiptera, Reduvidae). Acta Zoologica Mexicana 27(1): 87-102. DOI: https://doi.org/10.21829/azm.2011.271736
  203. Spanos, A. 2006. Where Do Statistical Models Come from? Revisiting the Problem of Specification. Lecture Notes-Monograph Series 49: 98-119. DOI: https://doi.org/10.1214/074921706000000419
  204. StatSoft, Inc. 2013. Electronic Statistics Textbook. StatSoft. Tulsa, USA. http://www.statsoft.com/textbook/ (consultado diciembre de 2019).
  205. Stevens, P. F. 2000. On characters and character states: do overlapping and non-overlapping variation, morphology and molecules all yield data of the same value? In: Scotland, R. y R. T. Pennington (eds.). Homology and Systematics: coding characters for phylogenetic analysis. The Systematics Association, special series volume 58. Taylor and Francis. London, UK. Pp. 81-105.
  206. Strauss, R. E. 2010a. Prospectus: The Future of Morphometrics. In: Elewa, A. M. T. (ed.). Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences 124. Springer-Verlag. Berlin, Germany. Pp. 345-352. DOI: https://doi.org/10.1007/978-3-540-95853-6_16
  207. Strauss, R. E. 2010b. Discriminating groups of organisms. In: Elewa, A. M. T. (ed.). Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences 124. Springer-Verlag. Berlin, Germany. Pp. 73-91. DOI: https://doi.org/10.1007/978-3-540-95853-6_4
  208. Strauss, R. E. y C. E. Bond. 1990. Taxonomic methods: morphology. In: Schreck, C. B. y P. B. Moyle (eds.). Methods for fish biology. American Fisheries Society. Bathesda MD. Rockville, USA. Pp. 109-140.
  209. Strauss, R. E. y M. N. Atanassov. 2006. Determining best complete subsets of specimens and characters for multivariate morphometric studies in the presence of large amounts of missing data. Biological Journal of the Linnean Society 88(2): 309-328. DOI: https://doi.org/10.1111/j.1095-8312.2006.00671.x
  210. Suri, H. 2013. Epistemological pluralism in research synthesis methods. International Journal of Qualitative Studies in Education 26(7): 889-911. DOI: https://doi.org/10.1080/09518398.2012.691565
  211. Systat Sofware. 2019. San Jose, CA., USA. https://systatsoftware.com/products/systat/
  212. Tal, E. 2013. Old and New Problems in Philosophy of Measurement. Philosophy Compass 8(12): 1159-1173. DOI: https://doi.org/10.1111/phc3.12089
  213. Thiele, K. 1993. The Holy Grail of the perfect character: The cladistic treatment of morphometric data. Cladistics 9(3): 275-304. DOI: https://doi.org/10.1006/clad.1993.1020
  214. Torcida, S. y S. I. Perez. 2012. Análisis de Procrustes y el estudio de la variación morfológica. Revista Argentina de Antropología Biológica 14(1): 131-141.
  215. Torcida, S., S. I. Perez y P. N. Gonzalez. 2014. An integrated approach for Landmark-based Resistant shape analysis in 3D. Evolutionary Biology 41: 351-366. DOI: https://doi.org/ doi:10.1007/s11692-013-9264-1
  216. Toro-Ibacache, M. V., G. Manriquez-Soto y I. Suazo-Galdames. 2010. Morfometría Geométrica y el Estudio de las Formas Biológicas: de la Morfología Descriptiva a la Morfología Cuantitativa. International Journal of Morphology 28(4): 977-990. DOI: https://doi.org/10.4067/s0717-95022010000400001
  217. Valcárcel, V. y P. Vargas. 2010. Quantitative morphology and species delimitation under the general lineage concept: optimization for Hedera (Araliaceae). American Journal of Botany 97(9): 1555-1573. DOI: https://doi.org/10.3732/ajb.1000115
  218. Van Valen, L. 2005. The statistics of variation. In: Hallgrímsson, B. y B. K. Hall. (eds.). Variation: A Central Concept in Biology. Academic Press. New York, USA. Pp 29-47. DOI: https://doi.org/10.1016/b978-012088777-4/50005-3
  219. Vergara-Solana, F. J., F. J. García-Rodríguez, J. J. Tavera, E. De Luna y J. De La Cruz-Agüero. 2014. Molecular and morphometric systematics of Diapterus (Perciformes, Gerreidae). Zoologica Scripta 43: 338-350. DOI: https://doi.org/10.1111/zsc.12054
  220. Von Cramon-Taubadel, N., B. C. Frazier y M. Mirazón-Lahr. 2007. The problem of assessing landmark error in geometric morphometrics: Theory, methods, and modifications. American Journal of Physical Anthropology 134(1): 24-35. DOI: https://doi.org/10.1002/ajpa.20616
  221. Webster, M. y H. D. Sheets. 2010. A practical introduction to landmark-based geometric morphometrics. In: Alroy, J. y G. Hunt (eds.). Quantitative Methods in Paleobiology, The Paleontological Society Papers 16. Geological Society of America, Denver, USA. Pp. 163-188.
  222. Wheeler, Q. D. 2008. Undisciplined thinking: morphology and Hennig’s unfinished revolution. Systematic Entomology 33(1): 2-7. DOI: https://doi.org/10.1111/j.1365-3113.2007.00411.x
  223. Wheeler, W. C. 2012. Systematics. A course of lectures. Wiley-Blackwell. Oxford, UK. 446 pp.
  224. Wickens, T. D. 1995. The Geometry of Multivariate Statistics. Lawrence Erlbaum Assoc. Publ. Hillsdale, USA. 165 pp.
  225. Wild, C. J. y M. Pfannkuch. 1999. Statistical thinking in empirical enquiry. International Statistical Review 67(3): 223-248. DOI: https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
  226. Williams, D. M., M. C. Ebach y Q. D. Wheeler. 2010. Beyond Belief: The Steady Resurrection of Phenetics. In: Williams, D. M. y S. Knapp (eds.). Beyond Cladistics: The Branching of a Paradigm. University of California Press. Berkeley, USA. Pp. 169-196. DOI: https://doi.org/10.1525/california/9780520267725.003.0010
  227. Wright, M. y D. M. Hillis. 2014. Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data. PLoS ONE 9(10): e109210. DOI: https://doi.org/10.1371/journal.pone.0109210
  228. Zelditch, M. L., D. L. Swiderski y H. D. Sheets. 2012. Geometric morphometrics for biologists: a primer. 2nd Ed. Academic Press. New York, USA. 488 pp.