Integrando análisis morfométricos y filogenéticos: de la sistemática fenética a la morfometría filogenética

Autores/as

DOI:

https://doi.org/10.21829/abm127.2020.1640

Palabras clave:

análisis multivariados, filogenia, forma, marcas, morfometría geométrica

Resumen

Antecedentes y Objetivos: Se han acumulado métodos cuantitativos para el uso de mediciones lineales y coordenadas Cartesianas de puntos en análisis de la variación morfométrica. A diferencia de revisiones previas, aquí se enfatizan las bases teóricas de los espacios matemáticos y del morfoespacio de un carácter taxonómico. El objetivo de esta revisión es suministrar elementos conceptuales para una comprensión básica de los métodos morfométricos y estadísticos útiles en la sistemática bajo un enfoque filogenético.

Métodos: Los datos morfométricos se están aplicando en estudios de biología comparativa, usando las filogenias como referencia. En contraste, las aplicaciones de la morfometría en sistemática han sido con el objetivo de agrupar y distinguir grupos taxonómicos fenéticamente con la similitud total. Bajo un enfoque filogenético, los datos morfométricos también se pueden usar para el estudio de la variación de caracteres taxonómicos, la identidad de los estados y la inferencia de filogenias. Los grupos taxonómicos debieran ser propuestos a partir de grupos monofiléticos descubiertos con métodos filogenéticos.

Resultados clave: Se presentan las bases de la teoría de la morfometría, geometría vectorial, el espacio de Kendall, la distancia Procrustes, proyección de espacios tangenciales y construcción de hipercubos del morfoespacio. Se revisan conceptos estadísticos útiles para la aplicación de los Análisis de Componentes Principales y los Análisis de Variables Canónicas en sistemática. Particularmente se dan recomendaciones y ejemplos sobre el uso de mediciones lineales y coordenadas de puntos en análisis morfométricos para la identificación de especies, la variación de caracteres taxonómicos y en la inferencia de filogenias y clasificación.

Conclusiones: El amplio acervo actual de métodos brinda la oportunidad de integrar los datos morfométricos para descubrir homología táxica y homología transformacional. Esto implica un cambio epistemológico necesario para transitar de aplicaciones bajo una sistemática fenética, a la integración de los análisis morfométricos como parte de la investigación filogenética.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Efraín De Luna,

Instituto de Ecología, A.C.

Biodiversidad y Sistemática

Investigador Titular

Citas

Adams, D. C. y E. Otárola-Castillo. 2013. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4(4): 393-399. DOI: https://doi.org/10.1111/2041-210X.12035 DOI: https://doi.org/10.1111/2041-210X.12035

Adams, D. C., A. Cardini, L. R. Monteiro, P. O'Higgins y F. J. Rohlf. 2011. Morphometrics and phylogenetics: Principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of Human Evolution 60(2): 240-243. DOI: https://doi.org/10.1016/j.jhevol.2010.02.003 DOI: https://doi.org/10.1016/j.jhevol.2010.02.003

Adams, D. C., F. J. Rohlf y D. E. Slice. 2013. A field comes of age: Geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy 24(1): 7-14. DOI: https://doi.org/10.4404/hystrix-24.1-6283

Ancona, J. J., J. J. Ortiz-Díaz, E. De Luna, J. Tun-Garrido y R. C. Barrientos-Medina. 2019. Statistical analyses of morphological variation in the Gymnopodium floribundum complex (Polygonaceae): definition of three subspecies. Acta Botanica Mexicana 126: e1517. DOI: https://doi.org/10.21829/abm126.2019.1517 DOI: https://doi.org/10.21829/abm126.2019.1517

Ascarrunz, E., J. Claude y W. G. Joyce. 2019. Estimating the phylogeny of geoemydid turtles (Cryptodira) from landmark data: an assessment of different methods. PeerJ 7: e7476. DOI: https://doi.org/10.7717/peerj.7476 DOI: https://doi.org/10.7717/peerj.7476

Assis, L. C. 2009. Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25(5): 528-544. DOI: https://doi.org/10.1111/j.1096-0031.2009.00261.x DOI: https://doi.org/10.1111/j.1096-0031.2009.00261.x

Assis, L. C. 2015. Homology assessment in parsimony and model‐based analyses: two sides of the same coin. Cladistics 31(3): 315-320. DOI: https://doi.org/10.1111/cla.12085 DOI: https://doi.org/10.1111/cla.12085

Atchley, W. R. y E. H. Bryant (eds.). 1975. Multivariate statistical methods. Among-groups covariation. Benchmark papers in Systematic and Evolutionary Biology 1. Dowden, Hutchinson and Ross, Inc. Pennsylvania, USA. 461 pp.

Atchley, W. R. y D. Anderson. 1978. Ratios and the statistical analysis of biological data. Systematic Zoology 27(1): 71-78. DOI: https://doi.org/10.2307/2412816 DOI: https://doi.org/10.2307/2412816

Banchoff, T. y J. Wermer. 1991. Linear algebra through geometry. Undergraduate texts in Mathematics. Springer. New York, USA. DOI: https://doi.org/10.1007/978-1-4612-4390-8 DOI: https://doi.org/10.1007/978-1-4612-4390-8

Bartlett, M. S. 1965. Multivariate statistics. In: Waterman, T. H. y H. J. Morowitz (eds.). Theoretical and Mathematical Biology. Blaidsdell Publ. Co. New York, USA. Pp. 201-224.

Barraclough, R. y R. E. Blackith. 1962. Morphometric relationships in the genus Ditylenchus. Nemaologica 8(1): 51-58. DOI: https://doi.org/10.1163/187529262x01016 DOI: https://doi.org/10.1163/187529262X01016

Benítez, H. A. y T. A. Püschel. 2014. Modelando la varianza de la forma: morfometría geométrica aplicaciones en biología evolutiva. International Journal of Morphology 32(3): 998-1008. DOI: https://doi.org/10.4067/s0717-95022014000300041 DOI: https://doi.org/10.4067/S0717-95022014000300041

Bona, P., M. D. Ezcurra, F. Barrios y M. V. Fernandez-Blanco. 2018. A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines. Proceedings of the Royal Society B: Biological Sciences 285(1885): 20180843. DOI: https://doi.org/10.1098/rspb.2018.0843 DOI: https://doi.org/10.1098/rspb.2018.0843

Bookstein, F. L. 1978. The measurement of biological shape and shape change. Lecture Notes in Biomathematics. 24. Springer-Verlag New York, USA. 191 pp. DOI: https://doi.org/10.1007/978-3-642-93093-5 DOI: https://doi.org/10.1007/978-3-642-93093-5

Bookstein, F. L. 1982. Foundations of morphometrics. Annual Review of Ecology and Systematics 13(1): 451-470. DOI: https://doi.org/10.1146/annurev.es.13.110182.002315 DOI: https://doi.org/10.1146/annurev.es.13.110182.002315

Bookstein, F. L. 1984. A statistical method for biological shape comparisons. Journal of Theoretical Biology 107(3): 475-520. DOI: https://doi.org/10.1016/s0022-5193(84)80104-6 DOI: https://doi.org/10.1016/S0022-5193(84)80104-6

Bookstein, F. L. 1989. Principal warps: Thin plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6): 567-585. DOI: https://doi.org/10.1109/34.24792 DOI: https://doi.org/10.1109/34.24792

Bookstein, F. L. 1992. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press. Cambridge, UK. 435 pp. DOI: https://doi.org/10.1017/CBO9780511573064

Bookstein, F. L. 1994. Can biometrical shape be a homologous character? In: Hall, B. K. (ed.). Homology: The hierarchical basis of comparative biology. Academy Press. London, UK. Pp. 197-227. DOI: https://doi.org/10.1016/b978-0-12-318920-2.50011-1 DOI: https://doi.org/10.1016/B978-0-08-057430-1.50011-1

Bookstein, F. L. 1996a. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 58(2): 313-365. DOI: https://doi.org/10.1016/0092-8240(95)00329-0 DOI: https://doi.org/10.1007/BF02458311

Bookstein, F. L. 1996b. Combining the Tools of Geometric Morphometrics. In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. (eds.). Advances in Morphometrics. NATO ASI Series (Series A: Life Sciences), vol. 284. Springer. Boston, USA. Pp. 131-151. DOI: https://doi.org/10.1007/978-1-4757-9083-2_12 DOI: https://doi.org/10.1007/978-1-4757-9083-2_12

Bookstein, F. L. 2017. A Newly Noticed Formula Enforces Fundamental Limits on Geometric Morphometric Analyses. Evolutionary Biology 44(4): 522-541. DOI: https://doi.org/10.1007/s11692-017-9424-9 DOI: https://doi.org/10.1007/s11692-017-9424-9

Bookstein, F. L. 2018. A Course in Morphometrics for Biologists. Geometry and Statistics for Studies of Organismal Form. Cambridge University Press. Cambridge, UK. 556 p. DOI: https://doi.org/10.1017/9781108120418 DOI: https://doi.org/10.1017/9781108120418

Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, G. R. Smith y R. E. Strauss. 1985. Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, With Examples From Fishes. Special Publication No. 15. Academy of Natural Sciences of Philadelphia. Philadelphia, USA. 277 pp.

Botero-Trujillo, R., R. Ott y L. S. Carvalho. 2017. Systematic revision and phylogeny of the South American sun-spider genus Gaucha Mello-Leitão (Solifugae: Mummuciidae), with description of four new species and two new generic synonymies. Arthropod Systematics and Phylogeny 75(1): 3-44. https://www.senckenberg.de/wp-content/uploads/2019/07/01_asp_75_1_botero_3-44.pdf (consultado diciembre de 2019).

Brower, A. V. Z. y V. Schawaroch. 1996. Three steps of homology assessment. Cladistics 12(3): 265-272. DOI: https://doi.org/10.1006/clad.1996.0020 DOI: https://doi.org/10.1111/j.1096-0031.1996.tb00014.x

Byrkit, D. R. 1987. Statistics today: A comprehensive introduction. The Benjamin-Cummings Publishing Company. San Francisco, USA. 850 pp.

Campbell, R. C. 1974. Statistics for Biologists. Cambridge University Press. Cambridge, UK. 385 pp.

Campbell, N. A. y W. R. Atchley. 1981. The geometry of canonical variate analysis. Systematic Zoology 30(3): 268-280. DOI: https://doi.org/10.1093/sysbio/30.3.268 DOI: https://doi.org/10.1093/sysbio/30.3.268

Cannon, C. H. y P. S. Manos. 2001. Combining and comparing morphometric shape descriptors with a molecular phylogeny: the case of fruit type evolution in Bornean Lithocarpus (Fagaceae). Systematic Biology 50(6): 860-880. DOI: https://doi.org/10.1080/106351501753462849 DOI: https://doi.org/10.1080/106351501753462849

Carroll, J. D. y P. E. Green. 1997. Mathematical tools for applied multivariate analysis. Academic Press. London, UK. 376 pp. DOI: https://doi.org/10.1016/B978-0-12-160954-2.X5000-8 DOI: https://doi.org/10.1016/B978-0-12-160954-2.X5000-8

Catalano, S. A. y P. A. Goloboff. 2012. Simultaneously Mapping and Superimposing Landmark Configurations with Parsimony as Optimality Criterion. Systematic Biology 61(3): 392-400. DOI: https://doi.org/10.1093/sysbio/syr119 DOI: https://doi.org/10.1093/sysbio/syr119

Catalano, S. A., P. A. Goloboff y N. P. Giannini. 2010. Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26(5): 539-549. DOI: https://doi.org/10.1111/j.1096-0031.2010.00302.x DOI: https://doi.org/10.1111/j.1096-0031.2010.00302.x

Catalano, S. A., M. D. Ercoli y F. J. Prevosti. 2015. The more, the better: the use of multiple landmark configurations to solve the phylogenetic relationships in Musteloids. Systematic Biology 64(2): 294-306. DOI: https://doi.org/10.1093/sysbio/syu107 DOI: https://doi.org/10.1093/sysbio/syu107

Chew, T., E. De Luna y D. González. 2010. Phylogenetic relationships of the pseudobulbous Tillandsia species (Bromeliaceae) inferred from cladistic analyses of ITS2, 5.8S ribosomal RNA gene, and ETS sequences. Systematic Botany 35(1): 86-95. DOI: https://doi.org/10.1600/036364410790862632 DOI: https://doi.org/10.1600/036364410790862632

Chollet-Villalpando, J. G. y E. De Luna. 2020. A geometric morphometric approach for disparity of the sulcus acusticus of sagitta in species of Gerreidae (Teleostei: Perciformes). Organisms Diversity and Evolution. DOI: https://doi.org/10.1007/s13127-019-00429-9 DOI: https://doi.org/10.1007/s13127-019-00429-9

Chollet-Villalpando, J. G., F. J. García-Rodríguez, E. De Luna y J. De La Cruz-Agüero. 2019. Geometric morphometrics for the analysis of character variation in size and shape of the sulcus acusticus of sagittae otolith in species of Gerreidae (Teleostei: Perciformes). Marine Biodiversity 49: 2323-2332. DOI: https://doi.org/10.1007/s12526-019-00970-y DOI: https://doi.org/10.1007/s12526-019-00970-y

Claridge, M. F. 1995. Introducing systematics Agenda 2000. Biodiversity and Conservation 4(5): 451-454. DOI: https://doi.org/10.1007/bf00056335 DOI: https://doi.org/10.1007/BF00056335

Claude, J. 2008. Morphometrics with R. Use R series. Springer-Verlag. New York, USA. 317 pp. DOI: https://doi.org/10.1007/978-0-387-77789-4 DOI: https://doi.org/10.1007/978-0-387-77789-4

Clouse, R. M., B. L. de Bivort y G. Giribet. 2011. Phylogenetic signal in morphometric data. Cladistics 27(4): 337-340. DOI: https://doi.org/10.1111/j.1096-0031.2010.00346.x DOI: https://doi.org/10.1111/j.1096-0031.2010.00346.x

Coxeter, H. S. M. 1973. Regular Polytopes. Dover Publications Inc. Mineola, USA. 321 pp.

Crisci, J. V. y M. F. López-Armengol. 1983. Introducción a la teoría y práctica de la taxonomía numérica, serie de biología, monografía 26. Secretaría General de la Organización de los Estados Americanos. Washington, EUA. 132 pp.

De Bivort, B. L., R. M. Clouse y G. Giribet. 2010. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research 48(4): 294-309. DOI: https://doi.org/10.1111/j.1439-0469.2009.00562.x DOI: https://doi.org/10.1111/j.1439-0469.2009.00562.x

Del Castillo-Batista, A. P., J. Ponce-Saavedra y J. C. Montero-Castro. 2017. Análisis morfométrico de Cestrum guatemalense, C. mexicanum y C. pacayense (Solanaceae). Revista Mexicana de Biodiversidad 88: 56-64. DOI: https://dx.doi.org/10.1016/j.rmb.2017.01.021 DOI: https://doi.org/10.1016/j.rmb.2017.01.021

De Luna, E. 1995. Bases filosóficas de los análisis cladísticos para la investigación taxonómica. Acta Botanica Mexicana 33: 63-79. DOI: https://doi.org/10.21829/abm33.1995.754 DOI: https://doi.org/10.21829/abm33.1995.754

De Luna, E. 2016. ¿Cuál programa de morfometría es más usado? Encuesta. In: Blog de Morfometría Geométrica. http://morfometriageometrica.blogspot.com/2016/10/cual-programa-de-morfometria-es-mas.html

De Luna, E. y B. D. Mishler. 1996. El concepto de homología filogenética y la selección de caracteres taxonómicos. Boletín de la Sociedad Botánica de México 59: 131-146. DOI: https://doi.org/10.17129/botsci.1511

De Luna, E. y G. Gómez-Velasco. 2008. Morphometrics and the identification of Braunia andrieuxii and B. secunda (Hedwigiaceae: Bryopsida). Systematic Botany 33(2): 219-228. DOI: https://doi.org/10.1600/036364408784571608 DOI: https://doi.org/10.1600/036364408784571608

De Luna, E., J. A. Guerrero y T. Chew-Taracena. 2005. Sistemática Biológica: avances y direcciones en la teoría y los métodos de la reconstrucción filogenética. Hidrobiológica 15(3): 351-370.

Dennis, B., J. M. Ponciano, M. L. Taper y S. R. Lele. 2019. Errors in Statistical Inference Under Model Misspecification: Evidence, Hypothesis Testing, and AIC. Frontiers in Ecology and Evolution 7: 372. DOI: https://doi.org/10.3389/fevo.2019.00372 DOI: https://doi.org/10.3389/fevo.2019.00372

De Pinna, M. C. C. 1991. Concepts and test of homology in the cladistic paradigm. Cladistics 7(4): 367-394. DOI: https://doi.org/10.1111/j.1096-0031.1991.tb00045.x DOI: https://doi.org/10.1111/j.1096-0031.1991.tb00045.x

De Queiroz, A. y P. H. Wimberger. 1993. The usefulness of behavior for phylogeny estimation: Levels of homoplasy in behavioral and morphological characters. Evolution 47: 46-60. DOI: https://doi.org/10.1111/j.1558-5646.1993.tb01198.x

De Souza, F. de P. S. T., G. P. Lewis y J. A. Hawkins. 2010. A revision of the South American genus Apuleia (Leguminosae, Cassieae). Kew Bulletin 65(2): 225-232. DOI: https://doi.org/10.1007/s12225-010-9213-4 DOI: https://doi.org/10.1007/s12225-010-9213-4

Depypere, L., P. Chaerle, P. Breyne, K. Vander Mijnsbrugge y P. Goetghebeur. 2009. A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Systematics and Evolution 279(1-4): 219-231. DOI: https://doi.org/10.1007/s00606-009-0158-8 DOI: https://doi.org/10.1007/s00606-009-0158-8

DeSalle, R. 2006. What´s in a character? Journal of Biomedical Informatics 39(1): 6-17. DOI: https://doi.org/10.1016/j.jbi.2005.11.002 DOI: https://doi.org/10.1016/j.jbi.2005.11.002

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada y C. W. Robledo. 2017. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Córdoba, Argentina. http://www.infostat.com.ar

Donoghue, M. J. 1992. Homology. In: Keller, E. F. y E. A. Lloyd (eds.). Keywords in Evolutionary Biology. Harvard University Press. Cambridge, USA. Pp. 170-179.

Douma, J. C. y J. T. Weedon. 2019. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution 10(9): 1412-1430. DOI: https://doi.org/10.1111/2041-210x.13234 DOI: https://doi.org/10.1111/2041-210X.13234

Dryden, I. L. 2018. shapes package. R Foundation for Statistical Computing, Vienna, Austria. Contributed package. Version 1.2.4. http://www.R-project.org

Dryden, I. L. y K. V. Mardia. 1998. Statistical shape analysis. John Wiley and Sons. New York, USA. 347 pp.

Dujardin, S. y J. P. Dujardin. 2019. Geometric morphometrics in the cloud. Infection, Genetics and Evolution 70: 189-196. DOI: https://doi.org/10.1016/j.meegid.2019.02.018 DOI: https://doi.org/10.1016/j.meegid.2019.02.018

Engstrom, T. N., H. B. Shaffer y W. P. McCord. 2004. Multiple Data Sets, High Homoplasy, and the Phylogeny of Softshell Turtles (Testudines: Trionychidae). Systematic Biology 53(5): 693-710. DOI: https://doi.org/10.1080/10635150490503053 DOI: https://doi.org/10.1080/10635150490503053

Farris, J. S. 2007. Coding of continuous characters revisited. Darwiniana 45(supl): 9-10.

Farris, J. S., A. G. Kluge y M. J. Eckhardt. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19(2): 172-189. DOI: https://doi.org/10.2307/2412452 DOI: https://doi.org/10.2307/2412452

Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25: 471-492.

Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125(1): 1-15. DOI: https://doi.org/10.1086/284325 DOI: https://doi.org/10.1086/284325

Felsenstein, J. 2000. PHYLIP (Phylogeny Inference Package) Version 3.6. University of Washington. Seattle, USA.

Felsenstein, J. 2002. Quantitative characters, phylogenies, and morphometrics. In: MacLeod, N. y F. Forey (eds.). Morphology, shape and phylogeny. Taylor and Francis. London, UK. Pp. 27-44. DOI: https://doi.org/10.1201/9780203165171.ch3

Felsenstein, J. 2010. Phylogeny and morphometric data: a new paradigm? Correspondence on Morphmet mailing list, 4 Nov, 2010. http://www.mail-archive.com/morphmet@morphometrics.org/msg02008.html (consultado diciembre de 2019).

Fielding, A. H. 2007. Cluster and classification techniques for the Biosciences. Cambridge University Press. Cambridge, UK. 246 pp. DOI: https://doi.org/10.1017/CBO9780511607493 DOI: https://doi.org/10.1017/CBO9780511607493

Fletcher, P. T., C. Lu, S. M. Pizer y S. Joshi. 2004. Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imaging 23(8): 995-1005. DOI: https://doi.org/10.1109/tmi.2004.831793 DOI: https://doi.org/10.1109/TMI.2004.831793

Fragoso-Martínez, I., M. Martínez-Gordillo y E. De Luna. 2015. Salvia semiscaposa (Lamiaceae) a new species from Nanchititla, México. Phytotaxa 219(1): 58-68. DOI: https://doi.org/10.11646/phytotaxa.219.1.4 DOI: https://doi.org/10.11646/phytotaxa.219.1.4

Freudenstein, J. V. 2005. Characters, states and homology. Systematic Biology 54(6): 965-973. DOI: https://doi.org/10.1080/10635150500354654 DOI: https://doi.org/10.1080/10635150500354654

Fristrup, K. 1992. Character: current usages. In: Keller, E. F. y E. A. Lloyd. (eds). Keywords in Evolutionary Biology. Harvard University Press. Cambridge, USA. Pp. 45-51.

Gavrilets, S. 1999. Dynamics of clade diversification on the morphological hypercube. Proceedings of the Royal Society of London, serie B, Biological Sciences 266(1421): 817-824. DOI: https://doi.org/10.1098/rspb.1999.0711 DOI: https://doi.org/10.1098/rspb.1999.0711

Giere, R. N. 1979. Understanding Scientific Reasoning. Holt, Rinehart and Winston. New York, USA. 371 pp.

Gift, N. y P. F. Stevens. 1997. Vagaries in the delimitation of character states in quantitative variation -an experimental study. Systematic Biology 46(1): 112-125. DOI: https://doi.org/10.2307/2413639 DOI: https://doi.org/10.1093/sysbio/46.1.112

Giribet, G. 2015. Morphology should not be forgotten in the era of genomics-a phylogenetic perspective. Zoologischer Anzeiger - A Journal of Comparative Zoology 256: 96-103. DOI: https://doi.org/10.1016/j.jcz.2015.01.003 DOI: https://doi.org/10.1016/j.jcz.2015.01.003

Goloboff, P. A. y S. Catalano. 2011. Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 27 (1): 42-51. DOI: https://doi.org/10.1111/j.1096-0031.2010.00318.x DOI: https://doi.org/10.1111/j.1096-0031.2010.00318.x

Goloboff, P. A. y S. Catalano. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32(3): 221-238. DOI: https://doi.org/10.1111/cla.12160 DOI: https://doi.org/10.1111/cla.12160

Goloboff, P. A., C. I. Mattoni y A. S. Quinteros. 2006. Continuous characters analyzed as such. Cladistics 22(6): 589-601. DOI: https://doi.org/10.1111/j.1096-0031.2006.00122.x DOI: https://doi.org/10.1111/j.1096-0031.2006.00122.x

Goloboff, P. A., A. Torres y J. S. Arias. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34(4): 407-437. DOI: https://doi.org/10.1111/cla.12205 DOI: https://doi.org/10.1111/cla.12205

González-José, R., I. Escapa, W. Neves, R. Cuneo y N. Pucciarelli. 2008. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature 453(7196): 775-778. DOI: https://doi.org/10.1038/nature06891 DOI: https://doi.org/10.1038/nature06891

Goodall, C. 1991. Procrustes Methods in the Statistical Analysis of Shape. Journal of the Royal Statistical Society (series B (Methodological)) 53(2): 285-321. DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01825.x DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01825.x

Griffiths, P. E. 1999. Squaring the circle: natural kinds with historical essences. In: Wilson, R. A. (ed.). Species. New Interdisciplinary Essays. The MIT Press. Cambridge, USA. Pp. 209-228.

Guerrero-Enríquez, J. A., E. De Luna y C. Sánchez. 2003. Morphometrics in the quantification of character state identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera). Biological Journal of the Linnean Society 80(1): 45-55. DOI: https://doi.org/10.1046/j.1095-8312.2003.00218.x DOI: https://doi.org/10.1046/j.1095-8312.2003.00218.x

Gündüz, N. y E. Fokoué. 2015. Robust Classification of High Dimension Low Sample Size Data. arXiv e-prints: 1501.00592.

Gunz, P. y P. Mitteroecker. 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24(1): 103-109. DOI: https://doi.org/10.4404/hystrix-24.1-6292

Hammer, Ø., D. A. T. Harper y P. D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.

Hausner, M. 1965. A vector space approach to geometry. Dover books on Mathematics. Dover Publications Inc. New York, USA. 416 pp.

Hawkins, J. A. 2000. A survey of primary homology assessment: different botanists perceive and define characters in different ways. In: Scotland, R. y R. T. Pennington (eds.). Homology and Systematics: coding characters for phylogenetic analysis. The Systematics Association, special volume series 58. Taylor and Francis. London, UK. Pp. 22-53.

Hawkins, J. A., C. E. Hughes y R. W. Scotland. 1997. Primary homology assessment, characters and character states. Cladistics 13(3): 275-283. DOI: https://doi.org/10.1006/clad.1997.0042 DOI: https://doi.org/10.1111/j.1096-0031.1997.tb00320.x

Healy, M. J. R. 2000. Matrices for statistics. Clarendon Press. Oxford, UK. 147 pp.

Hillis, D. M. y J. J. Wiens. 2000. Molecules versus morphology in systematics. Conflicts, artifacts, and misconceptions. In: Wiens, J. J. (ed.). Phylogenetic Analysis of Morphological Data. Smithsonian Institution. Washington, DC., USA. Pp. 1-19.

Hodálová, I., P. Mereďa Jr., P. Mártonfi, L. Mártonfiová y J. Danihelka. 2008. Morphological Characters Useful for the Delimitation of Taxa Within Viola Subsect. Viola (Violaceae): A Morphometric Study from the West Carpathians. Folia Geobotanica 43(1): 83-117. DOI: https://doi.org/10.1007/s12224-008-9005-x DOI: https://doi.org/10.1007/s12224-008-9005-x

Houle, D., C. Pélabon, G. P. Wagner y T. F. Hansen. 2011. Measurement and meaning in biology. Quarterly Review of Biology 86(1): 3-34. DOI: https://doi.org/10.1086/658408 DOI: https://doi.org/10.1086/658408

Huckemann, S. y H. Ziezold. 2006. Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Advances in Applied Probability 38(2): 299-319. DOI: https://doi.org/10.1239/aap/1151337073 DOI: https://doi.org/10.1239/aap/1151337073

Humphries, C. J. 2002. Homology, characters and continuous variables. In: MacLeod, N. y F. Forey (eds.). Morphology, shape and phylogeny. Taylor and Francis. London, UK. Pp. 8-26. DOI: https://doi.org/10.1201/9780203165171.ch2

Jäkel, F., M. Singh, F. A. Wichmann y M. H. Herzog. 2016. An overview of quantitative approaches in Gestalt perception. Vision Research 126: 3-8. DOI: https://doi.org/10.1016/j.visres.2016.06.004 DOI: https://doi.org/10.1016/j.visres.2016.06.004

James, F. C. y C. E. McCulloch. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora's box. Annual Review of Ecology and Systematics 21(1): 129-166. DOI: https://doi.org/10.1146/annurev.ecolsys.21.1.129 DOI: https://doi.org/10.1146/annurev.es.21.110190.001021

Jaramillo, N. 2011. Morfometría geométrica: principios teóricos y métodos de empleo. In: Triana Chávez, O., A. M. Mejía Jaramillo y A. M. Gómez Palacio (eds.). Fronteras de investigación en enfermedades infecciosas. Modelo enfermedad de Chagas. Universidad de Antioquia. Antioquia, Colombia. Pp. 69-87.

Jardine, N. 1969. A Logical Basis for Biological Classification. Systematic Biology 18(1): 37-52. DOI: https://doi.org/10.2307/2412409 DOI: https://doi.org/10.1093/sysbio/18.1.37

Jeffers, J. N. R. 1967. The Study of Variation in Taxonomic Research. The Statistician 17(1): 29-43. DOI: https://doi.org/10.2307/2987200 DOI: https://doi.org/10.2307/2987200

Jenner, R. A. 2002. Boolean logic and character state identity: pitfalls of character coding in metazoan cladistics. Contributions to Zoology 71(1-3): 67-91. DOI: https://doi.org/10.1163/18759866-0710103006 DOI: https://doi.org/10.1163/18759866-0710103006

Jolliffe, I. 2005. Principal Component Analysis. In: Everitt, B. S. y D. C. Howell (eds.). Encyclopedia of Statistics in Behavioral Science. Wiley Online Library. Indianapolis, USA. DOI: https://doi.org/10.1002/0470013192.bsa501 DOI: https://doi.org/10.1002/0470013192.bsa501

Jung, S. y J. S. Marron. 2009. PCA consistency in high dimension, low sample size context. The Annals of Statistics 37(6B): 4104-4130. DOI: https://doi.org/10.1214/09-aos709 DOI: https://doi.org/10.1214/09-AOS709

Kachigan, K. S. 1991. Multivariate Statistical Analysis. A conceptual introduction. Radius Press. New York, USA. 303 pp.

Kendall, D. G. 1977. The diffusion of shape. Advances in Applied Probability 9(3): 428-430. DOI: https://doi.org/10.2307/1426091 DOI: https://doi.org/10.2307/1426091

Kendall, D. G. 1981. The statistics of shape. In: Barnett, V. (ed.). Interpreting multivariate data. John Wiley and Sons. New York, USA. Pp. 75-80.

Kendall, D. G. 1984. Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16(2): 81-121. DOI: https://doi.org/10.1112/blms/16.2.81 DOI: https://doi.org/10.1112/blms/16.2.81

Kendall, D. G. 1989. A survey of the statistical theory of shape. Statistical Science 4(2): 87-120. DOI: https://doi.org/10.1214/ss/1177012582 DOI: https://doi.org/10.1214/ss/1177012582

Kendall, D. G., D. Barden, T. K. Carne y H. Le. 1999. Shape and shape theory. John Wiley and Sons. Chichester, UK. 306 pp. DOI: https://doi.org/10.1002/9780470317006 DOI: https://doi.org/10.1002/9780470317006

Kendall, M. G. 2004. A course in the geometry of n dimensions. Dover publications, Inc. New York, USA. 63 pp.

Kent, J. T. y K. V. Mardia. 2001. Shape, Procrustes Tangent Projections and Bilateral Symmetry. Biometrika 88(2): 469-485. DOI: https://doi.org/10.1093/biomet/88.2.469 DOI: https://doi.org/10.1093/biomet/88.2.469

Kim, J. y M. Kim 2001. The mathematical structure of characters and modularity. In: Wagner, G. P. (ed). The character concept in Evolutionary Biology. Academic Press. Cambridge, USA. Pp. 215-236. DOI: https://doi.org/10.1016/B978-012730055-9/50019-7 DOI: https://doi.org/10.1016/B978-012730055-9/50019-7

Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11(2): 353-357. DOI: https://doi.org/10.1111/j.1755-0998.2010.02924.x DOI: https://doi.org/10.1111/j.1755-0998.2010.02924.x

Klingenberg, C. P. y N. A. Gidaszewski. 2010. Testing and Quantifying Phylogenetic Signals and Homoplasy in Morphometric Data. Systematic Biology 59(3): 245-261. DOI: https://doi.org/10.1093/sysbio/syp106 DOI: https://doi.org/10.1093/sysbio/syp106

Kluge, A. G. 1997. Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13(1-2): 81-96. DOI: https://doi.org/10.1111/j.1096-0031.1997.tb00242.x DOI: https://doi.org/10.1111/j.1096-0031.1997.tb00242.x

Kluge, A. G. 2004. On total evidence: for the record. Cladistics 20(2): 205-207. DOI: https://doi.org/10.1111/j.1096-0031.2004.00020.x DOI: https://doi.org/10.1111/j.1096-0031.2004.00020.x

Koutecký, P. 2015. MorphoTools: a set of R functions for morphometric analysis. Plant Systematics and Evolution 301: 1115-1121. DOI: https://doi.org/10.1007/s00606-014-1153-2 DOI: https://doi.org/10.1007/s00606-014-1153-2

Kume, A., I. L. Dryden y H. Le. 2007. Shape-space smoothing splines for planar landmark data. Biometrika 94(3): 513-528. DOI: https://doi.org/10.1093/biomet/asm047 DOI: https://doi.org/10.1093/biomet/asm047

Lattin, J., J. D. Carroll y P. E. Green. 2003. Analyzing Multivariate Data. Thomson Brooks and Cole. Pacific Grove, USA. 556 pp.

Lele, S. R. 1993. Euclidean distance matrix analysis (EDMA) of landmarks data: estimation of mean form and mean form difference. Mathematical Geology 25(5): 573-602. DOI: https://doi.org/10.1007/bf00890247 DOI: https://doi.org/10.1007/BF00890247

Lele, S. R. y J. T. Richtsmeier. 2001. An invariant approach to statistical analysis of shapes. Chapman and Hall/CRC. Boca Raton, USA. 308 pp. DOI: https://doi.org/10.1201/9781420036176

Lele, S. R. y C. E. McCulloch. 2002. Invariance, Identifiability, and Morphometrics. Journal of the American Statistical Association 97: 796-806. DOI: https://doi.org/10.1198/016214502388618609 DOI: https://doi.org/10.1198/016214502388618609

Lewis, P. 2001. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Systematic Biology 50(6): 913-925. DOI: https://doi.org/10.1080/106351501753462876 DOI: https://doi.org/10.1080/106351501753462876

MacLeod, N. 2002. Phylogenetic signals in morphometric data. In: MacLeod, N. y P. T. Forey (eds.). Morphology, Shape and Phylogeny. Taylor and Francis. London, UK. Pp. 100-138. DOI: https://doi.org/10.1201/9780203165171.ch7

MacLeod, N. 2017. Morphometrics: History, development methods and prospects. Zoological Systematics 42(1): 4-33. DOI: https://doi.org/10.11865/zs.201702

Magrini, S. y A. Scoppola. 2010. Geometric morphometrics as a tool to resolve taxonomic problems: the case of Ophioglossum species (ferns). In: Nimis, P. L. y R. Vignes Lebbe (eds.). Tools for Identifying Biodiversity: Progress and Problems. EUT - Edizioni Università di Trieste. Trieste, Italy. Pp. 251-256.

Manly, B. F. J. 1986. Multivariate Statistical Methods: A Primer. Chapman and Hall. London, UK. 159 pp.

Marcus, L. F. 1990. Traditional Morphometrics. In: Rohlf, F. J. y F. L. Bookstein (eds.). Proceedings of the Michigan Morphometrics Workshop. Special Publication 2. The University of Michigan Museum of Zoology. Ann Arbor, USA. Pp. 77-122.

Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. 1996. Advances in morphometrics. NATO ASI Series. Plenum Press. New York, USA. 587 pp. DOI: https://doi.org/10.1007/978-1-4757-9083-2 DOI: https://doi.org/10.1007/978-1-4757-9083-2

Marhold, K. 2011. Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy, T. F. y H. W. Lack (eds). Monographic plant systematics: Fundamental assessment of plant biodiversity. A.R.G. Gantner Verlag K.G., FL-9491 Ruggell. Vienna, Austria. Pp. 75-101.

Márquez, E. J., R. Cabeen, R. P. Woods y D. Houle. 2012. The measurement of local variation in shape. Evolutionary Biology 39(3): 419-439. DOI: https://doi.org/ 10.1007/s11692-012-9159-6 DOI: https://doi.org/10.1007/s11692-012-9159-6

Martínez-Domínguez, L., F. Nicolalde-Morejón, F. Vergara-Silva, D. W. Stevenson y E. del Callejo. 2017. Cryptic diversity, sympatry, and other integrative taxonomy scenarios in the Mexican Ceratozamia miqueliana complex (Zamiaceae). Organisms Diversity and Evolution 17: 727-752. DOI: https://doi.org/10.1007/s13127-017-0341-7 DOI: https://doi.org/10.1007/s13127-017-0341-7

Martínez-Melo, A., E. De Luna y B. E. Buitrón-Sánchez. 2017. Morfometría de los equinodeos de la Familia Cassidulidae (Echinoidea: Cassiduloida). Revista de Biología Tropical 65(supl. 1): s233-s243. DOI: https://doi.org/10.15517/rbt.v65i1-1.31691 DOI: https://doi.org/10.15517/rbt.v65i1-1.31691

Martínez-Naveira, A. 2007. La curvatura de Riemann a través de la historia. Miscelánea Matemática 44: 29-52. http://www.miscelaneamatematica.org/get_pdf.php?num=44&tit=Naveira_A_M (consultado diciembre de 2019).

Medina, R. G., R. J. Paxton, E. De Luna, F. A. Fleites, L. A. Medina y J. J. G. Quezada-Euán. 2018. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). Journal of Thermal Biology 74: 214-225. DOI: https://doi.org/10.1016/j.jtherbio.2018.04.003 DOI: https://doi.org/10.1016/j.jtherbio.2018.04.003

Medina-Villarreal, A., J. González-Astorga y A. E. de los Monteros. 2019. Evolution of Ceratozamia cycads: A proximate-ultimate approach. Molecular Phylogenetics and Evolution 139: 106530. DOI: https://doi.org/10.1016/j.ympev.2019.106530 DOI: https://doi.org/10.1016/j.ympev.2019.106530

Miller, T. R., T. D. Baird, C. M. Littlefield, G. Kofinas, F. Chapin III y C. L. Redman. 2008. Epistemological pluralism: reorganizing interdisciplinary research. Ecology and Society 13(2): 46. DOI: https://doi.org/10.5751/es-02671-130246 DOI: https://doi.org/10.5751/ES-02671-130246

Mishler, B. D. y E. De Luna. 1997. Sistemática filogenética y el concepto de Especie. Boletín de la Sociedad Botánica de México 60: 45-57. DOI: https://doi.org/10.17129/botsci.1518 DOI: https://doi.org/10.17129/botsci.1518

Mitteroecker, P. y S. M. Huttegger. 2009. The concept of morphospaces in evolutionary and developmental biology: Mathematics and metaphors. Biological Theory 4: 54-67. DOI: https://doi.org/10.1162/biot.2009.4.1.54 DOI: https://doi.org/10.1162/biot.2009.4.1.54

Monteiro, L. R. 2000. Why morphometrics is special: The problem with using partial warps as characters for phylogenetic inference. Systematic Biology 49(4): 796-800. DOI: https://doi.org/10.1080/106351500750049833 DOI: https://doi.org/10.1080/106351500750049833

Monteiro, L. R. 2013. Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, the Italian Journal of Mammalogy 24(1): 25-32. DOI: https://doi.org/10.4404/hystrix-24.1-6282

Naylor, G. 1996. Can partial warp scores be used as cladistic characters? In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice. (eds.). Advances in morphometrics. NATO ASI Series. Plenum Press. New York, USA. Pp. 519-530. DOI: https://doi.org/10.1007/978-1-4757-9083-2_45 DOI: https://doi.org/10.1007/978-1-4757-9083-2_45

Nixon K. y J. M. Carpenter. 1996. On simultaneous analysis. Cladistics 12(3): 221-241. DOI: https://doi.org/10.1006/clad.1996.0016 DOI: https://doi.org/10.1111/j.1096-0031.1996.tb00010.x

O´Higgins, P. 2010. Methodological issues in the description of forms. In: Lestrel, P. E. (ed.). Fourier descriptors and their applications in Biology. Cambridge University Press. Pp. 74-105. DOI: https://doi.org/10.1017/cbo9780511529870.005 DOI: https://doi.org/10.1017/CBO9780511529870.005

O´Higgins, P. y N. Jones. 2006. Tools for statistical shape analysis. Hull York Medical School. Heslington, UK. http://sites.google.com/site/hymsfme/resources. (consultado diciembre de 2019)

Ospina-Garcés, S. y E. De Luna. 2017. Phylogenetic analysis of landmark data and the evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae). Zoomorphology 136(2): 251-265. DOI: https://doi.org/10.1007/s00435-017-0345-z DOI: https://doi.org/10.1007/s00435-017-0345-z

Palci, A. y M. S. Y. Lee. 2019. Geometric morphometrics, homology and cladistics: Review and recommendations. Cladistics 35(2): 230-242. DOI: https://doi.org/10.1111/cla.12340 DOI: https://doi.org/10.1111/cla.12340

Parins-Fukuchi, C. 2018. Use of continuous traits can improve morphological phylogenetics. Systematic Biology 67(2): 328-339. DOI: https://doi.org/10.1093/sysbio/syx072 DOI: https://doi.org/10.1093/sysbio/syx072

Patterson, C. 1982. Morphological characters and homology. In: Joysey, K. A. y A. E. Friday (eds.). Problems of Phylogenetic Reconstruction. Academic Press. London, UK. Pp. 21-74.

Perez, S. I., V. Bernal y P. N. Gonzalez. 2006. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy 208(6): 769-784. https://doi.org/10.1111/j.1469-7580.2006.00576.x DOI: https://doi.org/10.1111/j.1469-7580.2006.00576.x

Philippe, H., G. Lecointre, H. L. van Le y H. L. Guyader. 1996. A Critical Study of Homoplasy in Molecular Data with the Use of a Morphologically Based Cladogram, and Its Consequences for Character Weighting. Molecular Biology and Evolution 13(9): 1174-1186. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a025682

Phillips, R. B. 1983. Shape Characters in numerical taxonomy and problems with ratios. Taxon 32(4): 535-544. DOI: https://doi.org/10.2307/1221721 DOI: https://doi.org/10.2307/1221721

Poe, S. y J. J. Wiens. 2000. Character selection and the methodology of morphological phylogenetics. In: Wiens, J. J. (ed.). Phylogenetic Analysis of Morphological Data. Smithsonian Institution. Washington, DC., USA. Pp. 20-36.

Polly, P. D. 2018. Geometric morphometrics. In: López-Varela, S. L. (ed.). The Encyclopedia of Archeological Sciences. John Wiley and Sons. Hoboken, USA. Pp. 1-5. DOI: https://doi.org/10.1002/9781119188230.saseas0258 DOI: https://doi.org/10.1002/9781119188230.saseas0258

Quezada-Euan, J. J. G., H. D. Sheets, E. De Luna y T. Eltz. 2015. Identification of cryptic species and morphotypes in male Euglossa: morphometric analysis of forewings (Hymenoptera: Euglossini). Apidologie 46(6): 787-795. DOI: https://doi.org/10.1007/s13592-015-0369-7 DOI: https://doi.org/10.1007/s13592-015-0369-7

Quicke, D. L. J. 1993. Principles and Techniques of Contemporary Taxonomy. Experimental and Clinical Neuroscience series. Springer. Dordrecht, Netherlands. 311 pp. DOI: https://doi.org/10.1007/978-94-011-2134-7 DOI: https://doi.org/10.1007/978-94-011-2134-7

Rae, T. C. 1998. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14(3): 221-228. DOI: https://doi.org/10.1006/clad.1998.0064 DOI: https://doi.org/10.1111/j.1096-0031.1998.tb00335.x

Ramírez-Galarza, A. I. y J. Seade-Kuri. 2002. Introducción a la geometría avanzada. Las prensas de ciencias. Facultad de Ciencias, Universidad Nacional Autónoma de México. México, D.F., México. 249 pp.

Ramírez-Sánchez, M. M., E. De Luna y C. Cramer. 2016. Geometric and traditional morphometrics for the assessment of character state identity: multivariate statistical analyses of character variation in the water mite genus Arrenurus (Acari, Hydrachnidia, Arrenuridae). Zoological Journal of the Linnean Society 177(4): 720-749. DOI: https://doi.org/10.1111/zoj.12384 DOI: https://doi.org/10.1111/zoj.12384

Revell, L. J., L. J. Harmon y D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57(4): 591-601. DOI: https://doi.org/10.1080/10635150802302427 DOI: https://doi.org/10.1080/10635150802302427

Reyment, R. A., R. E. Blackith y N. A. Campbell. 1984. Multivariate morphometrics. Academic Press. London, UK. 233 pp.

Richtsmeier, J. T., S. R. Lele y T. M. Cole. 2005. Landmark Morphometrics and the Analysis of Variation. In: Hallgrímsson, B. y B. K. Hall (eds.). Variation: A Central Concept in Biology. Academic Press. London, UK. Pp. 49-69. DOI: https://doi.org/10.1016/B978-012088777-4/50006-5 DOI: https://doi.org/10.1016/B978-012088777-4/50006-5

Rieppel, O. 2005. The philosophy of total evidence and its relevance for phylogenetic inference. Papeis Avulsos de Zoologia 45(8): 77-89. DOI: https://doi.org/10.1590/s0031-10492005000800001 DOI: https://doi.org/10.1590/S0031-10492005000800001

Rieppel, O. y M. Kearney. 2002. Similarity. Biological Journal of the Linnean Society 75(1): 59-82. DOI: https://doi.org/10.1046/j.1095-8312.2002.00006.x DOI: https://doi.org/10.1046/j.1095-8312.2002.00006.x

Rieppel, O. y M. Kearney. 2007. The poverty of taxonomic characters. Biology and Philosophy 22(1): 95-113. DOI: https://doi.org/10.1007/s10539-006-9024-z DOI: https://doi.org/10.1007/s10539-006-9024-z

Rodgers, J. L. 2010. The Epistemology of Mathematical and Statistical Modeling. A Quiet Methodological Revolution. American Psychologist 65(1):1-12. DOI: https://doi.org/10.1037/a0018326 DOI: https://doi.org/10.1037/a0018326

Rohlf, F. J. 1971. Perspectives on the Application of Multivariate Statistics to Taxonomy. Taxon 20(1): 85-90. DOI: https://doi.org/10.2307/1218537 DOI: https://doi.org/10.2307/1218537

Rohlf, F. J. 1996. Morphometric spaces, shape components and the effects of linear transformations. In: Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor y D. E. Slice (eds.). Advances in morphometrics. NATO ASI Series (series A: Life Sciences vol 2. Springer. New York, USA. Pp. 117-129. DOI: https://doi.org/10.1007/978-1-4757-9083-2_11 DOI: https://doi.org/10.1007/978-1-4757-9083-2_11

Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47(1): 147-158. DOI: https://doi.org/10.1080/106351598261094 DOI: https://doi.org/10.1080/106351598261094

Rohlf, F. J. 1999. Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification 16(2): 197-223. DOI: https://doi.org/10.1007/s003579900054 DOI: https://doi.org/10.1007/s003579900054

Rohlf, F. J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Publishing Setauket. New York, USA.

Rohlf, F. J. 2002. Geometric morphometrics and phylogeny. In: MacLeod, N. y P. T. Forey (eds.). Morphology, Shape and Phylogeny. Taylor and Francis. London, UK. Pp. 175-191. DOI: https://doi.org/10.1201/9780203165171.ch9

Rohlf, F. J. 2003. Bias and error in estimates of mean shape in geometric morphometrics. Journal of Human Evolution 44(6): 665-683. DOI: https://doi.org/10.1016/s0047-2484(03)00047-2 DOI: https://doi.org/10.1016/S0047-2484(03)00047-2

Rohlf, F. J. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26: 9-12. DOI: https://doi.org/10.4404/hystrix-26.1-11264

Rohlf, F. J. 2017. TpsDig software, Version 2.30. Computer program and documentation. State University of New York, Department of Ecology and Evolution. New York, USA. http://life.bio.sunysb.edu/morph/ (consultado diciembre de 2019).

Rohlf, F. J. y L. F. Marcus. 1993. A Revolution in Morphometrics. Trends in Ecology and Evolution 8(4): 129-32. DOI: https://doi.org/10.1016/0169-5347(93)90024-j DOI: https://doi.org/10.1016/0169-5347(93)90024-J

Ruse, M. 1988. Philosophy of biology today. State University of New York Press. Albany, USA. 155 pp.

Sanderson, M. J. y M. J. Donoghue. 1989. Patterns of variation in levels of homoplasy. Evolution 43(8): 1781-1795. DOI: https://doi.org/10.2307/2409392 DOI: https://doi.org/10.1111/j.1558-5646.1989.tb02626.x

Sanderson, M. J. y L. Hufford. (eds.). 1996. Homoplasy: The Recurrence of Similarity in Evolution. Academic Press. San Diego, USA. 339 pp.

Sandría, J. y E. De Luna. 2016. LMs4TNT, Java tool to convert xy coordinates to a TNT data block. jt4tnt v1.0. http://www.filogenetica.org/Java_tool/lms4tnt.htm (consultado diciembre de 2019).

Sereno, P. C. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23(6): 565-587. DOI: https://doi.org/10.1111/j.1096-0031.2007.00161.x DOI: https://doi.org/10.1111/j.1096-0031.2007.00161.x

Schlager, S. 2017. Morpho and Rvcg-Shape Analysis in R. In: Zheng, G., S. Li y G. Szekely (eds.). Statistical Shape and Deformation Analysis. Academic Press. London, UK. Pp. 217-256. DOI: https://doi.org/10.1016/B978-0-12-810493-4.00011-0

Sheets, H. D. 2005. MakeFan, a tool for drawing alignment ‘fans’ at equal angular spacing. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).

Sheets, H. D. 2014a. CoordGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).

Sheets, H. D. 2014b. Semiland8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).

Sheets, H. D. 2014c. PCAGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).

Sheets, H. D. 2014d. CVAGen8 software, Version 1. Computer program and documentation. Canisius College, Department of Physics. Buffalo, USA. http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php (consultado diciembre de 2019).

Sheets, H. D., M. Zelditch y D. Swiderski. 2002. Growth and shape: measurements and metrics. Systematic Biology 51(5): 817-822. DOI: https://doi.org/10.1080/10635150290102438 DOI: https://doi.org/10.1080/10635150290102438

Simpson, G. G., R. C. Lewontin y A. Roe. 1960. Quantitative Zoology. Harcourt, Brace and Company. New York, USA. 440 pp.

Slice, D. E. 2013. Morpheus et al., Java Edition. Department of Scientific Computing, The Florida State University. Tallahassee, USA. http://morphlab.sc.fsu.edu/software/morpheus/index.html (consultado diciembre de 2019).

Small, C. G. 1996. The statistical theory of shape. Springer Series in Statistics. Springer. New York, USA. 230 pp. DOI: https://doi.org/10.1007/978-1-4612-4032-7 DOI: https://doi.org/10.1007/978-1-4612-4032-7

Smith, M. R. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15(2): 20180632. DOI: https://doi.org/10.1098/rsbl.2018.0632 DOI: https://doi.org/10.1098/rsbl.2018.0632

Smith, R. J. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140(3): 476-486. DOI: https://doi.org/10.1002/ajpa.21090 DOI: https://doi.org/10.1002/ajpa.21090

Sneath, P. H. A. 1995. Thirty years of numerical taxonomy. Systematic Biology 44(3): 281-298. DOI: https://doi.org/10.2307/2413593 DOI: https://doi.org/10.2307/2413593

Solis-Zurita, C., E. De Luna y D. González. 2019. Phylogenetic relationships in the Sceloporus variabilis (Squamata: Phrynosomatidae) complex based on three molecular markers, continuous characters, and geometric morphometric data. Zoologica Scripta 48(4): 419-439. DOI: https://doi.org/10.1111/zsc.12349 DOI: https://doi.org/10.1111/zsc.12349

Sosa, V. 2007. A Molecular and Morphological Phylogenetic Study of Subtribe Bletiinae (Epidendreae, Orchidaceae). Systematic Botany 32(1): 34-42. DOI: https://doi.org/10.1600/036364407780360175 DOI: https://doi.org/10.1600/036364407780360175

Sosa, V. y E. De Luna. 1998. Morphometrics and character state recognition for cladistic analyses in the Bletia reflexa complex. Plant Systematics and Evolution 212(3-4): 185-213. DOI: https://doi.org/10.1007/bf01089739 DOI: https://doi.org/10.1007/BF01089739

Soto-Vivas, A., J. Liria y E. De Luna. 2011. Morfometria geométrica y filogenia en Rhodniini de Venezuela (Hemiptera, Reduvidae). Acta Zoologica Mexicana 27(1): 87-102. DOI: https://doi.org/10.21829/azm.2011.271736 DOI: https://doi.org/10.21829/azm.2011.271736

Spanos, A. 2006. Where Do Statistical Models Come from? Revisiting the Problem of Specification. Lecture Notes-Monograph Series 49: 98-119. DOI: https://doi.org/10.1214/074921706000000419 DOI: https://doi.org/10.1214/074921706000000419

StatSoft, Inc. 2013. Electronic Statistics Textbook. StatSoft. Tulsa, USA. http://www.statsoft.com/textbook/ (consultado diciembre de 2019).

Stevens, P. F. 2000. On characters and character states: do overlapping and non-overlapping variation, morphology and molecules all yield data of the same value? In: Scotland, R. y R. T. Pennington (eds.). Homology and Systematics: coding characters for phylogenetic analysis. The Systematics Association, special series volume 58. Taylor and Francis. London, UK. Pp. 81-105.

Strauss, R. E. 2010a. Prospectus: The Future of Morphometrics. In: Elewa, A. M. T. (ed.). Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences 124. Springer-Verlag. Berlin, Germany. Pp. 345-352. DOI: https://doi.org/10.1007/978-3-540-95853-6_16 DOI: https://doi.org/10.1007/978-3-540-95853-6_16

Strauss, R. E. 2010b. Discriminating groups of organisms. In: Elewa, A. M. T. (ed.). Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences 124. Springer-Verlag. Berlin, Germany. Pp. 73-91. DOI: https://doi.org/10.1007/978-3-540-95853-6_4 DOI: https://doi.org/10.1007/978-3-540-95853-6_4

Strauss, R. E. y C. E. Bond. 1990. Taxonomic methods: morphology. In: Schreck, C. B. y P. B. Moyle (eds.). Methods for fish biology. American Fisheries Society. Bathesda MD. Rockville, USA. Pp. 109-140.

Strauss, R. E. y M. N. Atanassov. 2006. Determining best complete subsets of specimens and characters for multivariate morphometric studies in the presence of large amounts of missing data. Biological Journal of the Linnean Society 88(2): 309-328. DOI: https://doi.org/10.1111/j.1095-8312.2006.00671.x DOI: https://doi.org/10.1111/j.1095-8312.2006.00671.x

Suri, H. 2013. Epistemological pluralism in research synthesis methods. International Journal of Qualitative Studies in Education 26(7): 889-911. DOI: https://doi.org/10.1080/09518398.2012.691565 DOI: https://doi.org/10.1080/09518398.2012.691565

Systat Sofware. 2019. San Jose, CA., USA. https://systatsoftware.com/products/systat/

Tal, E. 2013. Old and New Problems in Philosophy of Measurement. Philosophy Compass 8(12): 1159-1173. DOI: https://doi.org/10.1111/phc3.12089 DOI: https://doi.org/10.1111/phc3.12089

Thiele, K. 1993. The Holy Grail of the perfect character: The cladistic treatment of morphometric data. Cladistics 9(3): 275-304. DOI: https://doi.org/10.1006/clad.1993.1020 DOI: https://doi.org/10.1111/j.1096-0031.1993.tb00226.x

Torcida, S. y S. I. Perez. 2012. Análisis de Procrustes y el estudio de la variación morfológica. Revista Argentina de Antropología Biológica 14(1): 131-141.

Torcida, S., S. I. Perez y P. N. Gonzalez. 2014. An integrated approach for Landmark-based Resistant shape analysis in 3D. Evolutionary Biology 41: 351-366. DOI: https://doi.org/ doi:10.1007/s11692-013-9264-1 DOI: https://doi.org/10.1007/s11692-013-9264-1

Toro-Ibacache, M. V., G. Manriquez-Soto y I. Suazo-Galdames. 2010. Morfometría Geométrica y el Estudio de las Formas Biológicas: de la Morfología Descriptiva a la Morfología Cuantitativa. International Journal of Morphology 28(4): 977-990. DOI: https://doi.org/10.4067/s0717-95022010000400001 DOI: https://doi.org/10.4067/S0717-95022010000400001

Valcárcel, V. y P. Vargas. 2010. Quantitative morphology and species delimitation under the general lineage concept: optimization for Hedera (Araliaceae). American Journal of Botany 97(9): 1555-1573. DOI: https://doi.org/10.3732/ajb.1000115 DOI: https://doi.org/10.3732/ajb.1000115

Van Valen, L. 2005. The statistics of variation. In: Hallgrímsson, B. y B. K. Hall. (eds.). Variation: A Central Concept in Biology. Academic Press. New York, USA. Pp 29-47. DOI: https://doi.org/10.1016/b978-012088777-4/50005-3 DOI: https://doi.org/10.1016/B978-012088777-4/50005-3

Vergara-Solana, F. J., F. J. García-Rodríguez, J. J. Tavera, E. De Luna y J. De La Cruz-Agüero. 2014. Molecular and morphometric systematics of Diapterus (Perciformes, Gerreidae). Zoologica Scripta 43: 338-350. DOI: https://doi.org/10.1111/zsc.12054 DOI: https://doi.org/10.1111/zsc.12054

Von Cramon-Taubadel, N., B. C. Frazier y M. Mirazón-Lahr. 2007. The problem of assessing landmark error in geometric morphometrics: Theory, methods, and modifications. American Journal of Physical Anthropology 134(1): 24-35. DOI: https://doi.org/10.1002/ajpa.20616 DOI: https://doi.org/10.1002/ajpa.20616

Webster, M. y H. D. Sheets. 2010. A practical introduction to landmark-based geometric morphometrics. In: Alroy, J. y G. Hunt (eds.). Quantitative Methods in Paleobiology, The Paleontological Society Papers 16. Geological Society of America, Denver, USA. Pp. 163-188. DOI: https://doi.org/10.1017/S1089332600001868

Wheeler, Q. D. 2008. Undisciplined thinking: morphology and Hennig’s unfinished revolution. Systematic Entomology 33(1): 2-7. DOI: https://doi.org/10.1111/j.1365-3113.2007.00411.x DOI: https://doi.org/10.1111/j.1365-3113.2007.00411.x

Wheeler, W. C. 2012. Systematics. A course of lectures. Wiley-Blackwell. Oxford, UK. 446 pp. DOI: https://doi.org/10.1002/9781118301081

Wickens, T. D. 1995. The Geometry of Multivariate Statistics. Lawrence Erlbaum Assoc. Publ. Hillsdale, USA. 165 pp.

Wild, C. J. y M. Pfannkuch. 1999. Statistical thinking in empirical enquiry. International Statistical Review 67(3): 223-248. DOI: https://doi.org/10.1111/j.1751-5823.1999.tb00442.x DOI: https://doi.org/10.1111/j.1751-5823.1999.tb00442.x

Williams, D. M., M. C. Ebach y Q. D. Wheeler. 2010. Beyond Belief: The Steady Resurrection of Phenetics. In: Williams, D. M. y S. Knapp (eds.). Beyond Cladistics: The Branching of a Paradigm. University of California Press. Berkeley, USA. Pp. 169-196. DOI: https://doi.org/10.1525/california/9780520267725.003.0010 DOI: https://doi.org/10.1525/california/9780520267725.003.0010

Wright, M. y D. M. Hillis. 2014. Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data. PLoS ONE 9(10): e109210. DOI: https://doi.org/10.1371/journal.pone.0109210 DOI: https://doi.org/10.1371/journal.pone.0109210

Zelditch, M. L., D. L. Swiderski y H. D. Sheets. 2012. Geometric morphometrics for biologists: a primer. 2nd Ed. Academic Press. New York, USA. 488 pp.

Descargas

Publicado

2020-02-25

Cómo citar

De Luna, E. (2020). Integrando análisis morfométricos y filogenéticos: de la sistemática fenética a la morfometría filogenética. Acta Botanica Mexicana, (127). https://doi.org/10.21829/abm127.2020.1640
Metrics
Vistas/Descargas
  • Resumen
    3424
  • PDF
    539
  • EPUB
    63
  • XML
    342

Número

Sección

Revisión

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.